Combat in the Divinity Engine

3Characters in the editor

3Getting started

3Adding a new local instance to the level

4Overriding the properties of a local instance

5Character properties in detail

13Handy tools

13Console commands

13Kill

13Revive party member

13Level up

13Enemy inventory

13Enemy debugging

13Prepare your party

14Organizing combat

14Placement

15Character level

15Character types

16Combat design types

16Document your organization

16Document your fights

16Going advanced beyond this point

17Stats

17The stats files

18Reload stats

18Stat files: common knowledge

20Character

28Weapon

34Equipment

36Custom skills

36Custom scripting

Characters in the editor
Getting started
Creating combat starts by putting down one enemy in a level. Putting down an enemy in the game always starts by selecting a root template and adding a local instance of that root template to a level.
Wait, what is a root template?

A root template is an object, such as a character, that was created by a designer: it contains information about the art used, the physics capsule, the scale, and other default in-game properties. This is what the SideBar is showing.

A root template is a parent of all its local instances (or children). If anyone ever changes one or more properties of this root template, all its children will inherit these changes automatically, and they will change accordingly, unless the child had an override on the property.

This is a very handy feature: if you organize your root templates intelligently, this feature will save you a lot of work.

If you ever need to create a new root template, it's easier if you copy an existing one and change its properties, or, if it involves new artwork and/or new animations, ask an artist to set one up for you.

Selecting a root template
Open a test level (preferably a very basic, empty level that just loads very fast). To keep things simple for now, let's pick an existing root template.
Open the root template list, and browse to Characters > Enemies > Undead. All the enemies are in the Characters folder. If you ever create an enemy root template yourself, keep it organized and keep it in Characters > Enemies.

In the root template list, click Undead_Skeleton_Grunt_ALS to select it. Because it is the current selection, the SideBar of the editor will show the root template's properties and values. More on character properties later on.
Adding a new local instance to the level

With this root template selected, drag in into the viewport of your level and click once to place a local instance of it. (Or you can select the root template, click the "Place a new object" button in the toolbar and then click in the viewport.) To go back to selection instead of adding, click on the "Select object" button in the toolbar.
Find your local instance
You have now created one local instance of the skeleton. It is in your local Characters list. Open the Characters list and locate your character. Select your local character by either clicking it in the viewport or clicking it in the list.
Naming your locals

The editor probably named it "Undead_Skeleton_Grunt_ALS_000" unless you already had other skeletons in your level.
In actual development, it is a very good idea to rename this instance, or you will be jumping all over the place if you have to come back to this skeleton six months from now.
Talk to your design team about how they name their items and triggers to get an idea of naming convention. What follows is how we do it.

The first part which denotes the location of the character (e.g. CYS_ for Cyseal).
The second part adds a more detailed location, or the name of a combat moment, e.g. CYS_Lighthouse_ because they're obviously near the lighthouse...

With these two parts, we try to keep characters that belong to one combat in one "group". It allows us to easily filter out all characters in one certain combat. But we still keep information about race in there as well, e.g. CYS_Lighthouse_Skeleton_ and about equipment or role in combat, e.g. CYS_Lighthouse_Skeleton_Archer.
Whatever naming system you choose, just make sure there is a system before it's too late.

Now, go ahead and rename the local instance of your skeleton. (Rename by single clicking the local name in the list, or by pressing F2.)
Overriding the properties of a local instance
No more inheritance

If a property on a local is changed, the local will not inherit that property of the root anymore, even if you change it afterwards on the root.
You can recognize an override in the property list of a local when it is colored green.
To illustrate, select your local skeleton and change its DisplayName. Notice how it turns green.

Reset to parent

If you want to reset a local's overridden property to the root's, right click the name of the property and click "Reset". You can also choose "Reset All" to reset all overridden properties at once.

To illustrate, reset the DisplayName of your local skeleton. Notice that it changes back to the DisplayName value of the root and that is no longer colored green.

Why override?

Overriding one or more properties of a local makes sense if you need to make the local instance a bit more unique, or if a group of characters are slightly different from the root, but not different enough to justify the creation of a new root.
A lot of enemies and characters in Original Sin have overridden properties. At the very least, the LevelOverride property is filled in to be able to easily identify enemies of a certain level while in the editor.

Organizing your roots and how you use them in the game (locals) is up to you, but we try not to create to many roots if it doesn't make sense.
You will notice that most root templates created for Original Sin are primarily visually very different and many of the roots are re-used throughout the game but with different names and stats and equipment.

Character properties in detail

This will not list all properties, only the ones that really need to be explained. The others are either not important for combat, or only important for story or art. Feel free to experiment though.
DisplayName

This is the name that the player knows this character by: it appears in the health bar on top of the screen when you mouse over the character, in the dialog window, and in the combat log. You can override this to give a local a unique display name, or to give a group of locals a specific name.

For instance, if you have a root for a skeleton with an axe, and you called the root "Undead Killer", you can call the early in-game instances "Weak Undead Killer" on a local level.

We do, however, advocate smart naming. I.e. not every enemy needs a unique name. Choose a name that makes sense, is cool, and that is shared among equal enemies, especially grunts. This makes it clear to the player who he's facing.

For more unique enemies or bosses, the name can contain a hint, or even breathe history. Just changing the name of an enemy or a group of enemies sometimes makes a huge difference in atmosphere.

Make sure the design department knows about your names, and don't just change any name.
EquipmentClass

Not used for enemies. Only for players, companions and henchmen.

Global

When just making combat, this is usually turned off. The global flag is only needed if the character is used in Osiris code: making it global makes its name known to code. If this is checked for a character you are working on, make sure you know how this character is used in story.

Most enemies in the game (like grunts) are not global because they are not used in Osiris story code. Boss characters or characters that change alignment, however, probably are global.
RootTemplate

You can actually change a character's root here. It is possible that changes are not visible until you restart the level or the editor. This can be handy if you want to keep all properties but just change the visual. To change the root template, just click the "..." button and select one of the root templates that are listed.
VisualSet

Some characters in the game (such as humans and skeletons) are built up from different parts. This allows you to mix up parts, change their colors, and thus customize their appearance. For instance, skeletons can have helmets or not, leather or metal boots, leather or metal armor, etc. Humans can have different heads, arms, legs, clothes, etc.
To change these parts, you change their VisualSet.
Even if a character does not support this VisualSet, you can still click the button to quickly see the character and all its animations.

In Original Sin, we often already set these visual differences in the root templates to create prototypes with particular stats so that the player could identify, for instance, "well armored skeletons" on sight. However, in the actual game, we sometimes change the VisualSet of a local skeleton to make it fit the design of that combat, or to simply make the fight look more varied. We still, however, try to keep their stats and behavior match their visual.
Another example: in Original Sin, the Immaculates had their own root template because they had their stylized Immaculate look. We created a root so that we wouldn't have to set the VisualSet of a human to the same Immaculate robes and color scheme over and over again. Once we put down an Immaculate in the game, we would only change the VisualSet of the local to change their hairdo, hair color, face and other small details to make sure not all Immaculates look the same.
Select your local skeleton and open the VisualSet window by clicking the "..." button next to VisualSet.

Top left, you can see the visuals and the colors that the artists have foreseen. You can add things yourself here as well, but this document does not go into that. (It is, however, pretty straightforward to add your own colors, so it's safe to experiment with adding colors to the "Color List" tabs. However, if you want to do this, you will have to do it in the Root Template!)
Top right, you can choose an animation from a dropdown list and play it.

Bottom left however, is where you can actually customize the way this local looks. Click one of the "Random Visual" buttons to change the visual of your skeleton, of click the "<<" and ">>" arrows to loop through all options. Note that skeletons have no support for color variations on their building blocks.

Go ahead and change the way your skeleton looks using VisualSet.

Alignment

For an enemy, this should say
Evil NPC
If it says something else, the character will not attack you on sight. Alignment for enemies can be something else if story turns this character hostile through scripting.

However, this does not mean that characters with alignments such as Good NPC or Neutral don't need your attention: the player in this game can fight everyone and anything, so all characters should have the right equipment and the right stats!

AvoidsTraps

Self explanatory. Most enemies don't. If you're making a really intelligent one, or if you're planting enemies in the middle of a minefield that should be a challenge for the player, you might want to check this box.
BloodSurfaceType

You can change what type of blood your character bleeds. This will also create the correct surface when it bleeds. This is especially interesting for skeletons (set it to None) or Elemental characters.

If this property is anything different than blood or ooze, the character is immune to the Bleeding status (and skills that set it) because it has no blood to bleed.
CanBeTeleported

Self explanatory. Most enemies can be teleported.

We only uncheck this for enemies and characters that we really do not want teleported because their scripts would otherwise stop working or if their behavior would look bad if they were teleported. Sometimes we also turn it off it we think it doesn't make sense that the player could teleport something so huge and heavy, for instance giant spiders and trolls.

If you want to create a boss character that is hard to teleport, do it through stats and do not use this checkbox. That is not what it's here for.

CanFight

Most characters and enemies need this checked, unless your story scripter says otherwise. Keep it on if you're making combat.

If this is unchecked, the character will not join combat and will simply never start or join a fight.

CombatGroupID
This is a very important property. You can only fill this in by selecting two or more characters in your level, then right click, then select Group Combat.
This means that as soon as one of these characters enters combat, the other members of the group will also automatically be alerted and join combat. In Original Sin, this is used very often to make sure the player experiences the fight as it was designed.
Make sure you do not join characters in a group combat that are far apart from each other! Only group characters together if it makes sense. Do not use Group to do this, use Group Combat. In Original Sin, almost all characters belong to a Combat Group; this is how important this property is.

To make sure this works, add another skeleton to your level. Select both your skeletons and group them in combat.

Equipment
For NPCs, this defines what gear they are wearing and what they have in their inventory: weapons, shield... Fill in the Equipment Stat ID of the equipment you want them to wear. This Stat ID has to exist in stats (you will not be able to fill in anything that doesn't exist in stats).

This is a very important property. If it is not filled in, the character will not have a weapon to fight with. If it is filled in incorrectly, the character may hit with weapons that are too high level for him, or that he does not have animations for.

More details about the Equipment Stat ID (where and how to fill it in) will follow.

Gender

This will not change the visual or sound, only the text picked from localization. The root template should have this right.
Groups

This has nothing to do with CombatGroupID! This is for story only. Do not mix up CombatGroup and Group!
Icon

This is the icon shown in the combat order and in dialog. This is usually okay from the root. If you have changed the VisualSet of a character, or if you want to give different humans different faces, then you can (and must) change this.
Click the "..." button next to Icon to browse and look for a new icon for your skeleton. Select an icon atlas from the dropdown, and type something in the icon text field to start filtering the icons. You will get a preview of the icon in the left upper corner.

InfluenceTreasureLevel
This is normally only disabled for animals and unimportant NPCs whose levels have a negative impact on treasure level in the area. For most characters and especially combat characters this should be checked.

(The level of treasure is calculated against the levels of the characters that are near the source of the treasure.)

IsBoss

Checking this makes the healthbar on top of the screen look cool. Use this for unique and very special characters only. (Can also be set and queried in script.)
IsFloating

If checked, this character will not be affected by surfaces on the ground. Try not to check this if the visual looks like it has feet and walks on the ground.
 IsHardcoreOnly
This property should only be used for non-story, non-global combat characters. This character will only be present if the player has chosen the Hardcore difficulty mode.

LevelOverride

Filling this in will override the level of the equipment and the character stats that are filled in in Equipment and Stats.

This will automatically re‑calculate the character stats and weapon stats, i.e. it will auto-level them up or down.

This is a very handy property because it means you can have characters of different levels with similar weapons and stats without having to create new weapons, equipment and stats for them. You can also easily experiment with and/or re-balance a fight or the entire game without having to dive into all the stat files. Once you have created a couple of fights, you will see that this property is handy.

This property is very often overridden, if only to indicate the level of the character or fight.

OnDeathActions

Here you can specify what happens when the character dies. E.g. create an ooze surface.

If you want other behavior (e.g. explode), you will have to script it.
You will notice that your skeleton already has an action called Destroy Parameters. This was set in its root by an artist and it makes the skeleton play an animation where it seems to break apart in little parts when you kill it.

If you make an enemy do something special when it dies, make sure all the instances of this enemy type do this. For instance, if one zombie crawler leaves an ooze puddle on death, all of them should. This means that this action could be on the root template, unless you introduce different types of zombie crawlers that all have different yet recognizable and logical death actions.

Experiment with OnDeathActions by letting your skeleton by create a puddle when it dies. Use CreatePuddle.

Scripts

Use this property to add scripts to this character. Every character in combat should at least always have DefaultCharacter.
If an enemy does join combat but doesn't choose targets, doesn't attack, doesn't react to things like being blinded, doesn't execute Attack Of Opportunity properly, etc, then this means it probably doesn't have the DefaultCharacter script assigned.

This property is very often green and filled in with extras, because this is the spot where you add arrows and skills to this character, which very often makes the fight.

To keep things simple for now, keep to using standard scripts: scripts that work for everyone and may be regularly updated. The list of available scripts comes straight from the resources of the game.
You can write custom scripts yourself too, but that is not part of this document.

So for now, use standard scripts. These...
· start with SKILL_ : give the character a certain skill

· start with ARROW_ : give the character a certain arrow (can only be used once, if not used, character will drop it as loot)

· start with SCROLL_ : give the character a certain scroll (can only be used once, if not used, character will drop it as loot)

· start with POTION_ : give the character a certain potion (can only be used once, if not used, character will drop it as loot)
· = CMB_ArcherKnifeClosest: give this to characters with a bow or crossbow and a knife in their inventory and they will switch between these two weapons, keep their distance, and choose good targets; it is a good idea to give all ranged characters a knife as a side-arm and to give them this script
· = CMB_Mage: give this to characters that are casters and they will only go to melee if they are no longer the smartest character on their side of the fight; as long as they are the smartest, they will avoid melee combat (incompatible with CMB_ArcherKnifeClosest and CMB_CautiousMage)
· = CMB_CautiousMage: give this to characters that are casters and they will try to stay at the maximum distance of the skill that you fill in as a parameter (incompatible with CMB_ArcherKnifeClosest and CMB_Mage)
Scripts: skill

Go ahead and give this character SKILL_Projectile_EnemyFlare. Filter all the scripts that the game knows by typing flare in the filter input box. Then select the script and click the → button to move it to the Assigned column.

When you have a script selected in the Assigned column, you will notice that there are variables in the third column. For instance, for Flare, it has the following parameters that take variables:

· displaySaveAPtext : if this is set to 1, the enemy will display text when its AI chooses to skip its turn in order to save AP. This is a variable because you might give this script to a character that cannot speak. If your character cannot speak or should not speak, set this to 0.

· frequency and frequencyStartAt : if these are both set to 0, the AI will adhere to cooldowns and will try to use this skill whenever it is possible. However, if you want to, you can override this. For instance, if you want a character to cast a Fireball in the fifth round, you set frequency to 5 and leave frequencyStartAt at 0. This will start a counter at 0 and will only allow the AI to use this script when the counter has reached 5. After the script has been executed, it will take 5 rounds again before it can be used.

· priority : if you give multiple scripts to one character, he will try to intelligently select the best script for the circumstances. This is the best choice most of the time. However, you can make certain scripts more important if you want to by filling in a number larger than 300 in this parameter. As a rule of thumb, it has to be > 100 and ≤ 1000. We usually choose a multiple of 50 or 100.
· saveAPtext : this is default set to CMB_MageSkipsTurnToPrepare but we also have CMB_MageSkipsTurnToPrepare2 and CMB_MageSkipsTurnToPrepare3. You want to change these variables if one caster has multiple skills or if multiple casters are in one fight.

These variable names of displayed text come from a key value pair which exists in a localization table that you can use as a designer to store and point to text. We will talk about this key-value pair localization table later on.

Now that your skeleton has a flare script, test out if it works by fighting it.

Scripts: wandering

To make the game look alive, it is a good idea to have enemies wander around when they are not in combat. Sometimes the player can see them from a distance or can sneak past them. If the enemies are perfectly still, it doesn't make a lot of sense.

There is a standard script called Wander that can be used on enemies to make them wander around a trigger. First create a trigger and give it a good name (see your design team for naming triggers, it is a good idea for triggers to have clear names and follow a naming convention). Then assign the script Wander to the character and choose your trigger and fiddle around with the other values.

Make your skeleton wander around and see that you understand the other values.
SkillSet

Keep this empty because we now give skills to characters through the Scripts property.

SpotSneakers

Defines whether this character uses his stats to try and spot sneakers.

Stats

For NPCs, this defines what stats they have. This includes level, strength, dexterity, resistances, abilities, immunities...
Fill in the CharacterStats Stat ID of the stats you want them to have. This CharacterStats Stat ID has to exist in stats.

This is a very important property. If it is not filled in, the character will not have stats. If it is filled in incorrectly, the character may be too strong or too weak, or have stats that don't make sense.
More details about the CharacterStats Stat ID (where and how to fill it in) will follow.

Treasure
Obviously also very important. If this is empty, the character will not drop anything when killed.
There are standard treasure tables for character types that should be used. It is advised to use these, if only during the early design phase, because a good balanced use of these will take care of most treasure problems.

· Standard treasure tables are: Warrior, Cleric, Ranger, Wizard, UnarmedMonster, TinyBoss, MiniBoss, MegaBoss

· If you want to force a special drop, add one of these: RangerSpecialArrow or WizardSkillbook or WizardScroll

You can fill in multiple treasure tables by separating them with ;

If you do this, the character will generate from each and every table that was filled in.

Make sure that you spell the treasure table correctly.

You can create specific (or extra) treasure tables for special characters, for instance, if you want them to always drop a unique weapon. More details about where and how to fill in these treasure tables will follow.

For now, have your skeleton drop something from a Warrior table and force it to drop a skillbook. Try out if it works by killing the skeleton.

RunSpeed and WalkSpeed

Do NOT change this. This is for animation. This has no impact on combat. If you do change this, the character will walk faster, but the animation might not fit the speed anymore.

If you want an enemy to cover more ground with one action point, change his stats.

Scale

You may change this if you don't exaggerate. Beyond a certain point, this will simply start looking bad. If you need a really huge character, try scaling up first, and if it doesn't work, talk to an artist.

Try scaling up your skeleton. Find the point where it looks ridiculous, have a good laugh, and Reset it to the root value.

Handy tools

To test out combat, there are a couple of handy tools and cheat-keys in the editor. Test these out in the editor. For instance, kill your skeleton with one button, create treasure in your own inventory, kill your party member and revive him, show your skeleton's inventory...

Console commands

Press CTRL+SHIFT+F11 to open the console. Some handy commands:

· peace on : all alignments are friendly and never start combat

· peace off : alignment rules are normal again

· killcombat : while in combat, this will immediately kill all enemies in the fight

· god : this will make you immortal BUT it is known to have results in the game that are different from when godmode would be off (i.e. false reports of bugs or the designer thinking behavior scripts don't work) and so it is not a good idea to test combat with godmode on unless you realize not everything may be as it seems

· givetreasure Equip : this is a treasure table created for designers; it creates items in your inventory that the player realistically might have at this point. If you want to have these items auto-identified, you first need to press CTRL+SHIFT+F9 and check the box Auto-Identify

· create statNameOfObject: create a specific item for your character where statNameOfObject is a weapon, a shield, a piece of armor, a book, a scroll...
Kill

Hover your cursor over an enemy and press CTRL+SHIFT+K to instantly kill him.

Revive party member

Hover your cursor over a dead party member and press CTRL+SHIFT+R to revive him.

Level up

Hover your cursor over a character and press CTRL+SHIFT+L to add one level to his stats. This does not automatically distribute points, it simply adds one level. (This also works on enemies!)

Enemy inventory

Select an enemy by CTRL+SHIFT+clicking him and then press CTRL+SHIFT+Y to display his inventory. This gives you an overview of his stats and in-game values of his equipment.

Enemy debugging

Select an enemy by CTRL+SHIFT+clicking him. Then use the scrollwheel of your mouse (together with CTRL+SHIFT) to scroll between pages of information of the character. This shows you all his stats, what is in his inventory, information of the scripts he is running, etc.
Prepare your party

Hit CTRL+SHIFT+P to:

· add 2 companions to your party

· level up your party members

· change the "class" of your party members (gives them skills and appropriate stats)

· creates items in their inventories
Organizing combat

If you are creating combat for an entire game, it is a good idea to organize your fights instead of just randomly adding fights to the game.

Placement

Together with design, look at a region and plan up front where there will be "stuff to do". Make sure you know the region very well so that your combat does not interfere with their storytelling or scripts. This step should end with a very rough mockup of a map of the region, with circles and X's that indicate where what will happen.
This will give you an idea of how many fights there will be in this area.

Ask design where story expects a (big) fight or where level design expects a fight. Work together with level design. Ask for dungeons or cellars in spots where combat would not be logical otherwise.

In general, design should find a good "heartbeat" for the game, so that there is something that happens every other moment. "Something" can be a lot of things, and these things should jumbled up. The player can go from picking a flower to opening a chest to talking to an NPC to fighting a monster to reading a note, etc. It is best if these "things" are not always the same thing one after the other, and that there is variation, and that this variation is not something that is recognizable after a while. (I.e. don't always use the same order of things to fill up an area.)

This is true not only for combat, it is true for design as a whole. Combat is only one of the things that can fill up the world. And this is why combat design needs to do this together with the rest of the design team.

If you place combat, make sure the area allows for tactical depth, both from AI as from the player. Make sure it makes sense for monsters to be there. Add something small if necessary: a treasure, a trapdoor, a corpse...

If you have a top down map of the game, distribute all "things that happen" over the map and make sure there are no huge, boring, empty spots, but take into account that there should also be room for a bit of walking and the feeling of exploring. This may seem a balancing act, but if you play through the game yourself and you walk through the area, you will know when something has been "empty" for too long or not, or when something feels too crowded. Don't forget you can do different passes over an area, and in a final pass, you can add small things such as "clickables" and "interactables" (chests, barrels, crates, flowers, plants, corpses, tree trunks, bee hives...).
Character level

After having distributed fights over the map, again together with design, indicate on the map how story expects the player to go through the game. Because a Divinity game is a very free game, this is never quite clear, but there will a main story that unfolds, which is a good guideline.

It is also true that in the beginning, the player can be held by his hand a bit more, as he learns the ropes, and level differences between enemies will matter more. After the beginning of the game, level differences will start to matter less and level distribution will not matter as much.

In the end of this phase, you should have mockup maps with fights indicated, and regions that indicate character levels.

As a rule, think that one level 1 fight will level the player up one level, and two level 2 fights will level the player, and three level 3 fights will level the player, etc. Of course, experience gained from quests will also count, and because these are turn based campaigns, the numbers of fights needed to level up should never really become huge. Just know that leveling up in the beginning goes faster than in the middle or the end.

I.e. do not make 7 level one fights and 3 level 2 fights. RPGs don't work that way.

Character types

Again along with design (story and level design), and with the art team, make sure what different creatures you have and you can have, and distribute these over the map. They should become increasingly bigger, scarier, more menacing, etc.
However, make sure that you have some boss type characters in the beginning and in the middle too. Don't keep all the good stuff till the end. Introduce one of the most menacing characters somewhere already, if only to give the player a good scare. Make sure there's enough variation in character models and types for the player to look forward to the next fight.
We don't make the type of game where at first you kill rats, then giant rats and then dire rats.

Don't forget that there are character types such as orcs and humans and skeletons that can be equipped with different weapons and gear, and variations on those should also last you the entire game.

If you or design notice that for story an extra enemy type is needed somewhere, or a special boss character, or a special attack, or a custom script or behavior, make note of this and make sure that everyone knows (especially art and animation).

By the end of this phase, your map should have notes about what character type will pop up where. Check if you have used all character types that art is planning to make. Check if not all the same enemy types are being used one after the other. Check if elemental types are varied and evenly distributed.
Combat design types

Before even starting up the editor, think about different ways to challenge the player. Don't use the same trick twice in the same region. Make the fights varied. Don't use the same make-up of enemy types all the time. Introduce new and unique enemy tactics or even enemy types. Write on your map what will make each fight special. Sometimes "special" can be something really simple (e.g. "This is the only mage in this entire region that uses a Charm spell" or "These guys focus on your tank so heavily you'll have to figure out something else" or "These guys have a weapon that can petrify you, so you don't want to come close") or something really complex and special ("This demon has a custom skill that makes it rain fire from the sky, but he can only do it every five turns and he has to load it up in between and cannot move then, but he has a lot of HP, but is super vulnerable to air attacks").

However, don't make it too complex. Complex behavior is very often completely lost on the player. If you come up with combat behavior like the above example, get ready for custom scripting, and realize that you are going to have to give feedback to the player, which very often requires, for instance, special effects, scripting and text.

Try out new things and experiment in your editor: maybe it is possible to create a melee-only fight that is interesting.

Document your organization
Once you did come up with your designs and ideas and maps, think about how you are going to call your Root Templates, local characters, triggers, Character stats, Weapon stats, Equipment stats...

Make sure you still know what they mean six months from now. Make sure someone else still knows what they mean six years from now.

Document your fights

For every fight you make, create an entry in a document (preferably Excel) that states per fight:

· what characters you have used

· what spells and skills they are using

· what is special / what is the challenge

· what custom behavior was scripted

This will make it easy later on to make sure that fights are varied enough, that certain skills, weapons, character types are not over- or under-used, etc.
Going advanced beyond this point

Now that you know how to add local enemies to a region, give them skills and arrows, change their names and levels and treasure tables, you can actually start working with the root templates that were used in Original Sin. You don't NEED to change their stats or create new weapons for them.

What I mean is: what follows is the stuff you need to know if you really want to get your hands dirty.

Stats

The stats files

All Stats used in the game are in separate files, and not in the editor. The stats files are here:

\LSProjects\EyesOfAChild\Data\Public\Main\Stats\

It is possible that for your mod, you need to go to:

\LSProjects\EyesOfAChild\Data\Public\[ModNameUUID] \Stats\

The stats files are Excel files with macros (to export them to .txt files).

Never change anything directly in the .txt file because next time someone exports the Excel file, your change will be gone.

If you are working with P4, and you want to change a stat file, you can check out all files in the Generated folder at once. However, only check out the Excel file(s) you really need. Once you've made your changes, do not forget to export to .txt. Then close Excel and check P4 for changes that were made: it is best to revert unchanged files in the Generated folder in your changelist. If only the Excel file remains, you forgot to export.

The different types of stats are divided over different files. Most often you will be looking at the following files:

· Character: contains the level and personal stats of a character, such as STR, DEX, INT, resistances, ability points, immunities, talents, traits, how much XP they give, and how their pathfinding reacts to surfaces

· Equipment: contains an equipment ID which groups items such as weapons into an inventory. This equipment ID is then given to a character in the game. The equipment file merely groups items together, but these items have to exist (in the other files). Giving certain items to characters does not mean they will use them or equip them, they will merely be added to their inventory.

· Shield: contains different shield type definitions that you can then refer to in Equipment

· Weapon: contains different weapon type definitions that you can then refer to in Equipment

· TreasureTable: contains treasure table definitions.
· SkillData: contains properties of all skills. You can even create new skills here.
If you have looked at the Stats folder, you will have noticed that Armor is not included in the list above. This is because we do not equip NPCs with actual armor pieces. We fill in the armor rating directly in their Character stats.

Reload stats

When you are changing stats and saving stats while the editor is still running, the editor is not aware of these changes and you will need to reload stats. (Some stats are only reloaded properly after actually restarting the tool, but this should only happen once in a lifetime.)
If you changed stats, reload by clicking Tools > Reload Stats... in the menu of the tool. This will reload your level too, so if necessary, SAVE before you do this.

Stat files: common knowledge

In every stat file, the following rules are true.

The first column: Name

The first column (column A) contains the Name or Stats ID. This needs to be clear and unique.

It is best to follow a name convention or it will quickly become messy.

Names starting with an underscore

If the Name starts with an underscore character, it is treated differently in the editor and in code.

It is not shown in dropdown lists in the editor because the editor will think it is for internal use only and of no importance to the editor itself. For instance, if you create a character called _Demon this will not show up in the dropdown list of the Stats property of a character. If you create a weapon called _AlligatorBite, it will not show up in the dropdown list of the Stats property of an item.
If it is an item that is in a character's inventory, it will not be dropped when it is killed. For instance, if you give an alligator the weapon _AlligatorBite in his Equipment, this will not be dropped for obvious reasons.

A name with an underscore can therefore be used for two reasons:

· as a category (see further) or parent

· as a special type of item or weapon that should not or cannot be dropped by treasure

The second column: Using

The second column (column B) contains a parent. If this is filled in, it means that the line inherits all the properties of that Stats ID. That Stats ID needs to be in the same file.
For instance, the Character MaleHero inherits from _Hero, so that means that it automatically has all the stats from _Hero. Even if all other cells of MaleHero are empty. You can override one or more properties by filling in a cell in the MaleHero row. Leaving cells empty means that you are okay with the inherited values from _Hero.

We use inheritance to be able to create archetypes and races, and types.
For instance, in character, we have parents _Skeleton and _Zombie and _Troll and we apply them to our more specific skeleton, zombie and troll stats so that they always have the same base stats. For instance, if all skeletons should have high resistances to piercing: we add this to the _Skeleton parent and as soon as we need a skeleton, we give it the _Skeleton parent so that it has all the properties of a regular skeleton. And then we override the regular values. This way we can make a strong skeleton and a weak skeleton, but both will inherit the "archetype" skeleton.

The same goes for weapons. For instance, we only created the one handed sword type once, filled in all the columns necessary for it to work, then inherited in all the actual swords in game, where each sword had at least a level filled in, or another special property.

We also use this inheritance to keep data to a minimum and to be able to easily change a lot of entries just by changing one line (the parent).

As an added bonus, it makes it immediately apparent just by looking at some lines, how certain rows are special and different from the others.

Act part
Act part is the actual level in the game.

Level mapped values

A lot of values that you can fill are "level mapped". This means that, where it makes sense, you do not fill in an actual in-game value, but a value that indicates how strong something should be, on a scale from zero to ten.
This means that certain columns expect you to fill in a value between zero and ten, where zero means "this is really weak" and ten means "this is insanely strong".
When filling in stats like this, do not think in in-game values. Think in "on a scale from zero to ten, how weak or how strong is this stat?" This makes your life easier, because the system will do the work for you.
For instance, if I am filling in the stats of a troll, and I want him to be really strong, I will fill in a number between 7 and 10. This means he really is super strong. It does not matter if he is level 1 or level 20. Let's say I filled in 8. In game, his STR rating will be calculated for me: code will use this number AND his level. With this 8 I filled in, a low level troll in-game's STR may be 6 and a high level troll in-game's STR may be 17. For both trolls, his "stat value of STR" would still be 8.

There are a number of reasons why we do this:

· the values the player sees in-game can change at any time without us having to re-do all the stats

· if the creature's level changes, or if it inherits from another stat line, we don't need to change a thing

· the designer can override the level in LevelOverride without any problems

· code change the formulas that calculate the actual numbers for the NPCs at any time if necessary (for instance: if we feel that in balancing a 10 out of 10 for an enemy is still too weak, we can tweak the formula, which means changing one line of code, and not changing hundreds of values in stats)

Common mistake

Working in Excel makes it very easy to copy values over a range of cells. If you do this with root template IDs, be careful not to use the "auto-increment" function of Excel. It will change the last digit of the ID and that root template will not exist.
Changing, adding and exporting

If you make changes to a stats file, always take the following steps in this order:

1. if you have the stats file open in Excel, you must close it if:

a. it is read-only

b. and / or it is not up to date (not latest Perforce version)

2. checkout the stats Excel file in Perforce

3. checkout the entire Generated folder in Perforce

4. open the stats file in Excel

5. make your changes in the Excel file

6. in Excel, go to the Developer tab and click Macros (or ALT+F8)

7. choose the Generate script for the sheet you changed (make sure you select the right script, especially if you have multiple Excel files open)
8. if you get a read-only error, you forgot step 3
9. in the editor, reload stats to see if everything still works: if you have done anything wrong, code will give you a nice assert message

10. test out combat in the editor, use the debug tools to see how your changes affected the game
11. if you are satisfied with the changes to stats:

a. save and close the Excel file before checking it in!

b. in the Perforce client, choose revert unchanged files

c. if you only changed one stats file, you should only see one Excel file and usually only one txt file

d. go ahead and submit
Character
Managing this file

Before adding a new character or updating an existing one, familiarize yourself with how this file is organized. Note that some character types are grouped by race (e.g. Undead) and other characters are grouped by region (e.g. Cyseal).

Also note that all characters inherit from a parent. If you create a new character, at least inherit from _Base or from one of the _Race_Parents (e.g. _Human).

Changing parents

Realize that if you change just one value in _Base or any of the race parents, you will have changed the entire game because all characters inherit from at least a race parent, which in turn inherit from _Base.
Hardcoded difficulty settings

The Character Excel file starts with the following entries. These are hardcoded in the game and change all stats according to difficulty level.

· EasyPlayer

· NormalPlayer

· HardPlayer

· HardcorePlayer

· EasyNPC

· NormalNPC

· HardNPC

· HardcoreNPC
Creating a new entry

If you create a new entry, insert a new line in a spot that makes sense. You can also copy an existing line as a reference and insert that copied line to have something to work on. Of course don't forget to rename it in column A or you'll have your first rpg_stats assert.
Act part

Act part is the level of the character in game. You can override this in the editor by filling in LevelOverride. The level of the character is used in calculating every stat for this character, it is used in all kinds of formulas and is therefore a very important number.

Act strength

Act strength is modifier on the level of a character. This actively changes calculated values of a character, but the player will still see the level as it is filled in in Act part.

For instance, if you make a level 8 character and fill in 1 in Act strength, the character will appear to be level 8, but it will be much tougher in the game because its stats will be calculated as if it were level 9.

However, in Original Sin we never used Act strength as such, as we could always make characters tougher or easier by changing stats instead of act strength. Only use Act strength if all else fails.
STR, DEX, INT, CON, SPD, PER

These primary stats take a level mapped value. Make sure you know what this means.
At first, when filling this in, exaggerate and think in archetypes. For instance, when creating a wizard, give him a lot of INT, low STR and low CON. Test out the character and adjust the stats where necessary.

When filling in primary stats for NPCs, when you sum up all level mapped values, a good enemy should be between 20 and 30 in total. If it is lower, it is too weak. A weak NPC or a villager should be lower than 20. If it is higher, it may be too hard to kill. Usually, if all level mapped values of the primary stats of a character are above 30, they're really tough (e.g. boss monsters, demons, deathknights...).

Don't forget that NPCs follow the same rules as the player. If you give an archer low DEX, he will not hit his target very often. If you give him high DEX, he will hit more often, but he will also gain defense points. If you give a character a lot of SPD because you want him to have a lot of action points, he will also have high initiative and move faster.
Armor

A level mapped value that gives the character an armor rating.

Even though we could, we don't equip NPCs in the game with actual armor and clothes. We give them an armor rating by filling this in.

Feel free to experiment with these numbers, because in Original Sin, we keep them on the low side for regular characters (between 1 and 5) because of the fun factor.

ArmorBoost and Reflexes
Do not fill these in. Use Armor to give armor. Use DEX to make character evade attacks. Reflexes is not used in the system anymore. If filled in, it will be unclear to the player what is happening.
Vitality

Vitality is calculated automatically for your character, using his level and CON score. However, if you want to cheat, you can modify this value by filling in a percentage here. This is a percentage value. The vitality in game will be calculated value times this percentage.
InGameVitality = (CalculatedVitality * Vitality) / 100

I.e. if you want to give the character half of what he should have, fill in 50. If you want him to have double, fill in 200.

If you want to make a character tougher, do not merely double his vitality. It is often bad practice to just give more vitality to a character to make it tougher. In combination with interesting tactics and skills, this is okay.

ChanceToHitBoost

Do not fill this in. For better chance to hit, increase STR or DEX.

APMaximum, APStart, APRecovery

Use to override calculated Action Point scores. Should only be used in extreme cases.

Movement

Modify the distance a character can run with one action point. Fill in a number between -10 and 10 (to give a level mapped penalty or bonus). Should only be used in extreme cases.

Gain

A very important column! This determines how much XP you will get from killing a character.

For balancing reasons, in Original Sin, friendly or neutral characters such as villagers give None.

Most animals are 2 and up because they are often very easy to kill (e.g. rabbits).

Most enemies are 4 or 5.

7 and up are reserved for boss characters.

Don't worry. Once you have every fight in the game, you will revisit these numbers.

Sight and Hearing

If you want to modify the calculated sight and hearing scores of characters, fill in a number between -10 and 10 to give a level mapped penalty or bonus to the final scores.

Sight may be important because it is being used in combat to determine how far a character can see and when combat starts (how soon can they spot you).
Initiative

An absolute value to override the calculated initiative score of an enemy.
FOV

The angle at which characters can see. Defaults to 90 but can be wider.

Weight

The actual weight of a character in grams. Weight is used in certain skills (e.g. teleportation: heavier characters take more damage) and traps (e.g. some switches will only react to anything that is heavier than 1000 grams).

Resistances

ShadowResistance = resistance to Tenebrium.
The resistance to a damage type in percentages. You can fill in a number between -100 and 200.

If you fill in 50, the character will absorb half of the damage dealt to him.

If you fill in -100, the character will take double damage.

If you fill in 100, the character will absorb all damage.

If you fill in 150, the character will heal from the damage for half of the damage dealt.

CriticalChance

Modify the calculated chance a character has to hit criticals. Fill in a number between -10 and 10 to give a level mapped penalty or bonus to the final score.
MaxResistance

The maximum allowed resistance for a certain creature. Because resistances can be boosted beyond the numbers you fill in here, for instance by casting spells and wearing certain equipment, you can set a max here.

Abilities
In the Character file, the abilities list starts with RogueLore and ends with Luck. This currently is an absolute number, so between zero and five.

The following ability scores are not used by NPCs: Roguelore, Warriorlore, Rangerlore, FireSpecialist,Sourcery, WaterSpecialist, AirSpecialist, EarthSpecialist. The NPC skills do not require slots and do not get bonuses from these abilities. You can fill these in, they just won't matter.

Also (currently) not used by NPCs: Telekinesis, Sneaking, PickPocket, LockPicking, Crafting, Charm, Intimidate, Reason. You can fill these in, they just won't matter.
The following abilities are used and can change the game drastically.
· SingleHanded: the higher this number, the more damage the NPC will do with single handed weapons.

· TwoHanded: the higher this number, the more damage the NPC will do with two handed weapons.

· Blackrock: the NPC needs at least 1 in this ability to not get the Rot status.

· Bow: the higher this number, the more damage the NPC will do with a bow.

· Crossbow: the higher this number, the more damage the NPC will do with a crossbow.

· Shield: the higher this number, the more chance the NPC will have to block an attack.

· ArmorMastery: the higher this number, the higher the NPC's armor rating.

· BodyBuilding: affects saving throws against certain statuses.

· Willpower: affects saving throws against certain statuses..

· Repair: if you have an NPC that trades and that can repair items, his Repair score will determine how good he is at it. If it is zero, he will not be able to repair items.

· Loremaster: if you have an NPC that trades and that can identify items, his Loremaster score will determine what he can identify. If it is zero, he will not be able to identify items.

· Throwing: not yet active.

· Wand: not yet active.

· DualWielding: not yet active.
Reflection

If this is filled in, the character can reflect a certain type of damage back to the one that damaged it.

There are different ways to fill this in. Syntax: ChanceToReflect,FromDmgType,ToDmgType,[melee]

Examples:

· 50: 50% chance to reflect all damage types as themselves, enemy does not need to be in melee range

· 100, Fire: 100% chance to reflect fire damage as fire damage, enemy does not need to be in melee range

· 50, All, Fire, melee: 50% chance to reflect all damage types as fire damage, enemy needs to be in melee range

ExtraProperties

Not used for characters.

Flags

Can be used to make a character immune to certain statuses: FreezeImmunity, BurnImmunity, StunImmunity, PoisonImmunity, CharmImmunity, FearImmunity, KnockdownImmunity, MuteImmunity, ChilledImmunity, WarmImmunity, WetImmunity, BleedingImmunity, CrippledImmunity, BlindImmunity, CursedImmunity, WeakImmunity, SlowedImmunity, DiseasedImmunity, InfectiousDiseasedImmunity, PetrifiedImmunity, DrunkImmunity, SlippingImmunity
Can be used to set a status on a melee attacker: FreezeContact, BurnContact, StunContact, PoisonContact, ChillContact
You can fill in multiple flags separated by semicolons.
Talents

Fill in the character's talents in this column. For instance, AttackOfOpportunity is a handy one for enemies. You can fill in multiple talents separated by semicolons. Other handy code-names for talents are:

· ItemMovement

· ItemCreation

· Flanking

· AttackOfOpportunity

· Backstab

· Trade

· Lockpick

· ChanceToHitRanged

· ChanceToHitMelee

· Damage

· ActionPoints

· ActionPoints2

· Criticals

· IncreasedArmor

· Sight

· ResistFear

· ResistKnockdown

· ResistStun

· ResistPoison

· ResistSilence

· ResistDead

· Carry

· Throwing

· Repair

· ExpGain

· ExtraStatPoints

· ExtraSkillPoints

· Durability

· Awareness

· Vitality

· FireSpells

· WaterSpells

· AirSpells

· EarthSpells

· Charm

· Intimidate

· Reason

· Luck

· Initiative

· InventoryAccess

· AvoidDetection

· AnimalEmpathy

· Escapist

· StandYourGround

· SurpriseAttack

· LightStep

· ResurrectToFullHealth

· Scientist

· Raistlin

· MrKnowItAll

· WhatARush

· FaroutDude

· Leech

· ElementalAffinity

· FiveStarRestaurant

· Bully

· ElementalRanger

· LightningRod

· Politician

· WeatherProof

· LoneWolf

· Zombie

· Demon

· IceKing

· Courageous

· GoldenMage

· WalkItOff

· FolkDancer

· SpillNoBlood

· Stench

· Kickstarter

· WaLo_NaturalArmor

· WaLo_NaturalHealth

· WaLo_NaturalResistance

· RaLo_ArrowRecover

· RaLo_EvasionBonus

· RaLo_RangedAPBonus

· RoLo_DaggerAPBonus

· RoLo_DaggerBackStab

· RoLo_MovementBonus

· RoLo_HoldResistance
Traits

Fill in traits in this column. You can fill in multiple traits separated by semicolons. Possible traits are:
· Forgiving

· Vindictive

· Bold

· Timid

· Altruistic

· Egotistical

· Independent

· Obedient

· Pragmatic

· Romantic

· Spiritual

· Materialistic

· Righteous

· Renegade

· Blunt

· Considerate
· Compassionate
· Heartless
PathInfluence

This determines how the pathfinding AI will deal with surfaces. It first expects a surface type and then a weight. For instance, if it says "Lava,70" then it will try not to walk into lava and it will go "70" out of its way not to. The higher the number, the less likely the character will want to walk into the surface. 70 is really high and you should not fill in numbers higher than 70.

You can add different surfaces to this influence string separated by semicolons.

If you want to override the base influence, you need to fill in at least something, because otherwise it will inherit from _Base. It is interesting to override if you are creating for instance an elemental creature, or a zombie that heals from poison.
Exercise

Remember your skeleton in the editor? Create a new entry in the Character Excel file for him. Create it in the right spot, in the right group, inherit from the correct parent, give him some special stats that make him recognizable. Export the file and reload stats in the editor. Now give your skeleton the Character stats you created and verify with the editor and its debugging and testing tools that the skeleton actually got these values.
Use this skeleton, the Character file and reload stats as a means to experiment with the stats. Give him some really ridiculously low stats and some insanely high stats to verify that it works and that you understand Character stats.
Weapon

The importance of a weapon
Apart from character stats, the next most important part of the character's stats is how hard he hits and what he hits you with. His weapon. As long as you don't create a weapon for an enemy, he may not even attack you in combat, he may not do damage, he might not play an animation. Some enemies may default to unarmed combat if they do not have a weapon, and actually play an animation, but currently unarmed combat is undeveloped and will not do significant damage.

If an enemy starts waving his fists at you and start punching you, something is wrong with his Weapon or with his Equipment.

Weapon properties for enemies

The following items will describe weapon properties for enemies. These properties should be handled differently when creating weapons that players can carry. This document will not go into player weapons.

Create enemy weapons in the correct group

Creating a new enemy weapon should be done under the header _Specific_Enemy_Attacks. All the other groups (e.g. _Daggers and _Clubs and _Swords) are for player weapons.

Under this group, we try to organize the weapons per character type or group or race. Again, think about naming conventions before naming something.

Start enemy weapon names with an underscore so they don't show up in dropdowns in the editor. You don't need these. You only need their names in the Equipment Excel file.

Start enemy weapon names with an underscore so they don't show up in enemy inventories. A lot of enemies don't have real weapons to start with, and we don't want enemy weapons to show up in their (trading/pickpocketing) inventories. (It is possible for normal enemy weapons like daggers and swords and bows, but then the enemy weapons would have to adhere to the rest of the rules. In Original Sin, we chose not to do it, but the system supports it.)
Using

You know the Using column already. Inherit from one of the base or parent weapon types to make sure the game is balanced, fair, and that most of the properties are filled in correctly. With this filled in, not a lot of other cells need your attention. At the moment, we have these parents:

· _Axes

· _Bows

· _Clubs

· _Crossbows

· _Daggers

· _Spears

· _Staffs

· _Swords

· _TwoHandedAxes

· _TwoHandedSwords
Act part

You know this column already: it's the level of the weapon. This should be the same as the level of the character that you are going to give it to. However, this can be overridden in the editor using LevelOverride which will auto-level the character and the weapon stats.

Requirements

Leave this empty for enemy weapons. It will then use the parent value which is set to zero. You don't want to have to care if your NPC meets the requirements to use the weapon. When looking for bugs, check if the weapon has requirements.

IsTwoHanded

Currently, this is a Yes or No cell that tells code whether or not the player can still equip a shield or not. It also tells the animation system what animation to play on the character. Usually you can leave this empty.
AttackAPCost
How much AP it costs to attack once with this weapon. Usually you can leave this empty because it inherits from parent, but you can override.
Damage Type
What the base damage type is. Usually you can leave this empty because it inherits from parent, but you can override. Note that "None" is a special type of damage that is rarely used: it doesn't really have a name, cannot be resisted. "Shadow" is Tenebrium damage.
We rarely have weapons that purely do Shadow damage.

When choosing a damage type other than slashing, crushing or piercing, take into account that these types of damage do not get reduced by armor. It is therefore fair to fill in the column DamageBoost when choosing a magical damagetype.

Damage, Damage Range

Usually, the inherited value should be okay. However, for special enemies, it is good to know how weapon damage is calculated.

DA weapon does between x and y damage. How code calculates these numbers is as follows:
base damage x = Damage level mapped, i.e. in Damage, fill in a number between 0 and 10

base damage y = Damage level mapped + Damage Range level mapped, i.e. in Damage Range, fill in a number between 0 and 10

Example:

Damage 2 and Damage Range 6 = weapon does between 2 and 8 damage (level mapped)

Damage 5 and Damage Range 3 = weapon does between 5 and 8 damage (level mapped)
This means that the maximum damage of both weapons is the same, but the second weapon will be more interesting because its minimum damage is higher. I.e. its average damage output will be larger as well.

So if you want to know the maximum damage output of a weapon, you have to add Damage and Damage Range. This is a level mapped value. Have a look at the parents of the weapons to get an idea of player values. These numbers are low very often and also depend on Action Point cost of the attack, and whether they are two-handed or not. Look at the numbers and you will know that an enemy weapon with Damage 8 and Range 7 that costs 4 AP will be devastating.

DamageBoost

This is a positive or negative number in percentages that adds that amount to the damage after it's been calculated. E.g. if you fill in -50, it will first calculate the damage using Damage and Damage Range, and then it will cut both numbers in half.

If you fill in 200, it will double both numbers.

DamageFromBase

Don't fill this in. This is for generation only.

CriticalDamage and CriticalChance

These are level mapped numbers. The first is level mapped to a multiplier, the second one is level mapped to a percentage. In Original Sin, only a few enemies can actually hit criticals.

WeaponRange

Normally, the inherited value should be okay, unless you want to create a special attack, or are dealing with a special enemy or weapon.
Durability
A level mapped value that determines the durability score of an item. For enemies, we set this to 10 because we don't want their weapons to break. (We also set the Unbreakable flag.)

DurabilityDegradeSpeed, Value, Weight, Movement
Of no importance to enemy weapons. If you want to change an enemy's movement, do it in Character.

WeaponType

For enemies, this tells the animation system what animation slot to use.

If a character is using a strange attack animation or no animation at all, or is fighting with his fists, this may be filled in incorrectly.

AnimType

Only necessary for special cases, where WeaponType and twohanded are not enough.

Projectile

The UUID of the projectile that is fired by this weapon. This means that you can create your own projectile in the editor for a specific enemy or weapon (or work together with an artist).

Unless you are creating something very unique, leave this blank.

All columns between projectile and ExtraProperties

Leave all these blank. These are only used for treasure generation, special or unique player weapons and not for enemy weapons.

If you want an enemy to have more strength or AP or Willpower or Reflection, look at his Character Stats. Creating an enemy weapon that grants more STR may be a source of confusion later on.

ExtraProperties

These are semicolon separated properties that give the weapon extra powers, such as knockdown and burn. The syntax is:

status,chance,amountOfTurns

Example:

Burning,20,2

The above means that with every hit of the weapon, the target has a 20% chance of burning and if successful, it will have to savethrow against burning for 2 turns.

The status will automatically use the saving throw. For instance, a character with 3 BodyBuilding will always savethrow against this, so the higher the weapon level you are creating, the higher the chance should be. However, experiment with finding the right value, because we once had stone statues petrifying entire parties every single turn and that's just not a lot of fun.

If you want to know what statuses can be set by ExtraProperties, look at the previous sheet of the Excel file, ValueLists, and look at the statuses in row Status Type.
You will see that the statuses that can be set are for instance, but not limited to:
· Burning

· Frozen

· Poison

· Stun

· Mute

· Charm

· Knockdown

· InstantKnockdown

· Fear

· Chilled

· Bleeding

· Crippled

· Blind

· Cursed

· Weak

· Slowed

· Raged

· Diseased

· InfectiousDiseased

· Petrified

Of course you can also make a weapon that has a chance of making people wet, lucky, warm, invisible, hasted, drunk or smelly, but apart from being hilarious, it doesn't really bring a lot to the table.

Flags

Only fill in Unbreakable here if it's about enemy weapons.

Boosts

If you want to fill in anything here, it must be a weapon entry from under the header _BOOSTS_Weapon and it should be a specific enemy boost.

_BOOSTS_Weapon entries are entries used in magical item generation. However, you can directly apply them to weapons.

You can create your own enemy boosts if you want these weapons to do for instance two damage types. This is why you will already find _Enemy_Boost_BlackrockDamage: add this as a boost to a weapon and the weapon will do its default damage type and Tenebrium damage on top of it. If you want to create a weapon that does its default damage and fire damage, just look how we did it for Tenebrium.
InventoryTab

For enemy weapons, set this to Hidden.
RootTemplate
A very important cell, this determines what the weapon in your enemy's hands looks like.

There are two types of enemies: enemies that actually expect you to give them a 3D model of a weapon in their hands (e.g. orcs, humans, skeletons, trolls, some goblins, deathknights...), and enemies that have this weapon in their model already (e.g. some goblins, animals, spiders).

I.e. a spider or a wolf should not get an actual weapon model because it attacks with parts of their body, but it should get a weapon entry in the Weapons Excel file, otherwise it will not know the stats of its weapon. On the other hand, characters like skeletons can hold any type of weapon in their hands, a sword, a club, a dagger, a bow or even a guitar if you like, as long as you point to the right 3D object.
Enemies that have weapon model IN them

For this type of enemy, in RootTemplate, fill in

28e00823-2ba4-43bb-be10-e4d6d89e179f
This is a special root template "dummy".

Enemies that require an actual 3D model as a weapon

For this type of enemy, in RootTemplate, fill in the root's UUID.

How can you find a weapon's root UUID? You can use one of the UUIDs that you can find in the Weapon file that you like, or you can look up a weapon in the editor.
In the editor, go to the root templates list and go to the folder > Equipment > Weapons.

If you click the Preview button, you can get a 3D preview of the weapon model.

When you have found a weapon model you like, right click the root template name, choose "Copy GUID to clipboard" and you can now paste it in the Excel file.

ObjectCategory and everything after it

Leave all these cells empty! These are for treasure generation. We never want weapons created for enemies to drop from treasure.
Exercise

Create a new weapon entry for the skeleton in your test level. Create it in the correct spot in the Excel file. Copy an existing line to a new row to make your life easier, or be a badass and just insert a blank line. Give it a correct name. Give it some properties that makes it easily recognizable.

You will not be able to just give it to your skeleton just yet. You first need to put it in an inventory and then assign that inventory to your skeleton. Such inventories are in the Excel file Equipment.
Equipment

Refers to stats

In the editor, the Equipment property of a character expects a Stats ID from the Equipment file. This is the name of an entry in the Equipment Excel file. If you open this file, you will see it is very straightforward.
In the Equipment Excel file, every row can be seen as an inventory, a collection of items. Column A is the name or stats ID of the collection, and every cell in that one row is an item that is added to that inventory. Each cell is a reference to a stats ID or Name. This name has to exist in Weapon, Shield, Object or Potion. If you add an item name that doesn't exist in stats, you'll get an assert.

Seen as this is a pool of items, one and the same item can be in there multiple times.
Auto-equip

Characters will automatically try to equip these items. If you give them two shields or two weapons, the item that comes first (left to right), is the one that will be equipped. The other ones will be in their inventory.

No auto switch and no auto use

You can give characters multiple weapons and weapon types and gear setups by adding all kinds of things to this one row, but they will not automatically switch: if you want them to switch between weapons and gear, you will have to script this behavior.

If you give characters scrolls and arrows and potions this way, they will also not automatically use them: you will need to script this. It is much easier to give a character scrolls and arrows and potions by assigning the script to them. This will add the item and logic for you.

Notes

Usually, for an enemy or NPC, a weapon reference in the Equipment entry is enough.

Do NOT use Equipment to add items to a trader. Use the treasure system for this.

As soon as one cell is empty in a row, the system thinks that row has ended and anything that comes after that empty cell will not be part of the equipment set.

Exercise

Create a new entry for your test skeleton in your test level and add your newly created weapon to it. Give this Equipment to the skeleton in your test level. Verify that he is now carrying the contents of this inventory, and has your weapon equipped.
Character creation presets and henchmen

The Equipment Excel file also dictates what the player starts with and what the Henchmen have in their inventories. If you change these, you're changing what the different classes start with. You will recognize the following entries:

· Class_Fighter

· Class_Ranger

· Class_Knight

· Class_Cleric

· Class_Rogue

· Class_Witch

· Class_Wizard

· Class_Enchanter

· Class_Battlemage

· Class_Wayfarer

· Class_Shadowblade

· Henchman_Madoc_Paladin

· Henchman_Jahan_Mage

· Henchman_Wolgraff_Rogue

· Henchman_Bairdotr_Ranger
Custom skills

Creating custom skills for enemies is not part of this document (yet?).
Custom scripting

Creating custom scripts for enemies is not part of this document (yet?).
Page 1

