Contents

1The Workflow

1Analysis

3Good practices checklist

3Do not block players

3Support stealth gameplay

3Keep multiplayer in mind

4Multiplayer dialogs

4Keep documentation up to date

4Be defensive when scripting

4Clean up resources

4Follow naming conventions

4N+1 rule

5Careful with timing

The Workflow
Analysis
When starting on implementing a quest it's important to make a thorough analysis of what is asked and to work in a methodical way to get the quest implemented.

1. List characters and items

Start out by making a list of the characters and items you'll need for this quest

2. Setup normal flow

Next, setup the normal flow for the quest. These are the steps players have to perform to complete the quest. This is without handling special cases like players killing characters or destroying items. Do make mental notes where such special cases can occur, because they will need to be handled in the final script.
3. Identify quest updates, save points and Exploration zones
With your normal flow outlined, identify points where your Journal will be updated, where map markers will be added and where the game should have an auto-save region. At this point add the Journal and map marker entries to the Journal Excel file, so you don't forget about them. Only place autosave regions if it makes sense. That is after important points in the Story. You don't want the game to save every 5 minutes.
We want to reward players for exploring the game world. So place Exploration triggers where it makes sense. The harder an area was to find the better.

4. Place your game objects
Place your characters,items and triggers in the editor. This step includes making unqiue Root Templates for characters or items that need them. Generally, important NPCs or unique items will need a unique root template.

5. Create STUB scripts

Create the script resources and assign them for characters and items that need them. Each character will probably require a unique script in order to give them an idle behaviour. Nothing looks worse than a game world where nothing moves. In this step you don't want your final script logic in. You create a skeleton and make sure that everything is setup and ready to be scripted.

6. Create STUB Stats and Inventories

Create and assign treasures and inventories to your NPCs and items. In case that these are unique, create a skeleton implementation. These will be balanced later on, but it's important they're there, so you don't forget about them.

7. Implement normal flow

At this point, you have all the building blocks for your quest setup and you can start on the actual implementation. We start with the normal flow, but already script with possible alternate flows in mind. This will make sure your script will be cleaner and easier to maintain. Don't forget the journal and map marker updates here.
8. Test normal flow

Test your scripted work. Try and actively break your script. Don't just follow the steps as outlined in your normal flow. Try and do them in random order. Think of what other players could be doing and check if those cases are handled.
9. Implement alternate flows
At this point, because of your testing in step 8, you'll have identified several points where the quest will deviate from your normal flow. Players decided to destroy an item or kill an NPC or played the quest steps in a different order. You'll have to make sure these cases are all handled and supported. Sometimes this will mean adding a possible alternate solution for a quest.

10. Test the quest

Test often and exhaustively. It's very easy to make mistakes in Osiris. It's not because your Story builds that it works the way you intend it to. A simple typo can mean a quest can not be completely.

11. Detail behaviour scripts

Add some life to the game world by implementing the behaviours for your characters and items. This step will also include a lot of testing to make sure it looks believable and good.

12. Script review

When you're happy with your work, submit your Osiris and Behaviour scripts for review. The reviews will mostly catch scripting errors. Because of Osiris' nature it's very easy to miss logic/flow problems in a review. If you have tested your scripts thoroughly, you should've caught most logic/flow problems before. This will save time in QA.

13. Update documentation

When your quest is scripted and submitted, you should document it. Look at the Original Sin QA document for an example on how to document the quests. It's important to keep this documentation up to date. Quests will change based on feedback, don't forget the update the documentation. QA will use those docs to test your quest so make sure all solutions and steps are clearly defined in it.
Good practices checklist
Do not block players

In Divinity games player freedom is an important point. Avoid forcing the players down a path, setting up invisible walls or other ways to control players' actions. It might be tempting to make your scripting work easier, but fight this desire. Having players free to do and go where they want is an important aspect of the fun.

Support stealth gameplay

Always keep stealth gameplay in mind when implementing and designing quests. That means having opportunities or support for pickpocketing and sneaking past enemies/characters. Especially the sneaking part is important. If you have NPCs that start a dialog with players when those enter a certain trigger, make sure this only happens when the NPCs can actually see the players. There is scripting support provided for this in the main campaign.

Keep multiplayer in mind

In a multiplayer RPG it's important to keep aware of what multiple players might be doing. This is especially important in an RPG like ours where we try to give players as much freedom as possible.

This goes from the actual quest design and trickles all the way down to the implementation. At every step in your quest flow you need to be aware of:
· out of order execution: Multiple steps can be executed at the same time and by different players.

· Blocking of NPCs: Players can be talking to an NPC that you need in your quest. They might have to move somewhere or start a scene. Make sure that a player talking to this NPC is supported. Either by force closing a dialog when you know it's safe, or by writing additional scripting to support this

· Killing of NPCs: Players can kill NPCs you need in your quest. NPCs could also end up in environmental dangers. Make sure your quest can support this.
· Generic behaviours: At all times any player can disrupt the quest flow by stealing or destroying property of NPCs. They can also attack NPCs at any times. Make sure you support this.

· Timing issues: Players can already be at points you want things to appear/happen. Say you want a character to appear at a certain trigger in a house, you need to be aware that another player can already be present in that house.

· Destruction of property: Players can destroy a lot of items. This includes doors. Make sure you support players destroying items and destroying or lock picking locked doors and chests.

Multiplayer dialogs
The multiplayer dialogs are a unique feature of the Divinity games. Identify points in your quest flow where you can add these (when it makes sense!). This can go from making a decision to accept a quest or not or reflecting on a choice made by the players.

Keep documentation up to date

It's important to keep the quest documentation up to date. If your quest implementation changes your first reflex should be to update the documentation for it. The documentation is the only tool the QA team has to know what's possible/implemented for a quest. If these documents are wrong a lot of time is lost.

Be defensive when scripting

Script while anticipating change. This will mean making your script as clean as possible and clever use of procedures to encapsulate logical blocks of the quest.
Players are unpredictable. Be careful when referencing an item or character in a script (Osiris and Behaviour scripts), because it might be destroyed or killed. Also be careful when starting dialogs with characters: make sure they're not already in a dialog, dead or in another location.
Clean up resources
When you're done with a goal, don't forget to close it and delete the database facts you no longer need. Don't forget to clear any effects that shouldn't linger. Don't forget to clean up timers that you might have created in behaviour scripts.
Follow naming conventions

It's importance for maintenance and readability that naming conventions and scripting style is respected. This means prefixing characters, items, triggers, scripts and dialogs with the region code. Don't forget the "_DD_","_PD_" and "_AD_" prefixes for dialogs. Check the dialog document for more details.

Make sure your Osiris databases, Osiris procedures and Script variables have unique and clear names to avoid name clashes.

N+1 rule

The n+1 rule means that when you're implementing a quest there should always be a solution for completing a quest. These are fallback solutions in case NPCs get killed or Quest items get lost. When a quest has n solutions, there will be an extra solution to support this. This can mean placing extra keys or notes to make sure the players can progress the quest.
Careful with timing
Be careful when you have scripting logic that depends on specific timings. These are very easy to mess up. Either because players blocking NPCs somehow or by other player actions that disrupt the normal game flow (like starting combat for example).
