Useful Osiris systems
Table of Contents

1Useful Osiris systems

3Dialogs

3Interactive dialogs

3Defining interactive dialogs

3Cleaning up interactive dialogs

4Interactive Dialog Events

4Automated dialogs

4Defining automated dialogs

4Cleaning up automated dialogs

5Automated Dialog Events

5Item dialogs

5Defining item dialogs

5Removing item dialogs

5Companions

5Starting dialogs from Osiris

6Starting on entering a trigger

7Manual starting

7Default Dialogs

7Handling dialog requests

8Temporarily disabling dialogs

8Player Comments

9Trading

9Effects

10Timers

10Character Timers

10Item Timers

11Exploration

11Exploration Zones

11Definition

11Exploration Events

11Definition

11Triggering Exploration Events

11Autosave points

11Definition

12Removing

12Companions

12Definition

13Recruiting

14Dismissing

15Companion dialogs

15Definition

15Removing

15Custom Dialogs

16Triggers

16Types

16Point triggers

16Area triggers

16Registering and Unregistering characters

16Trigger Events

17Helper functions and procedures

17Single use triggers

18Sneak Triggers

18Detecting items in triggers

19Generic behaviours

19Reputation and Attitude

19Effects of RepAttitude

20Generic Behaviour options

20Enabling and disabling reactions

20Tweaking tolerances

21Item Ownership

21Assigning

21Personal items

22Shops

22Forbidden areas

22Definition

23Guarded regions

23Summoned Guards

24Prison

25Generic dialogs

25Threaten dialogs

26Attack dialogs

26Moving characters from Osiris

Dialogs

Interactive dialogs

Interactive dialogs are dialogs that involve player characters. They prevent the player in such a dialog from moving and it shows the dialog user interface for that player. They can have multiple players and NPCs in them. Interactive dialogs should always be started from Osiris! You'll end up with characters unable to speak or other problems if you don't!
Defining interactive dialogs
	DB_Dialogs((CHARACTER)_Npc,(STRING)_Dialog)

	DB_Dialogs((CHARACTER)_Npc,(CHARACTER)_Npc2,(STRING)_Dialog)

	DB_Dialogs((CHARACTER)_Npc,(CHARACTER)_Npc2,(CHARACTER)_Npc3,(STRING)_Dialog)

	DB_Dialogs((CHARACTER)_Npc,(CHARACTER)_Npc2,(CHARACTER)_Npc3,(CHARACTER)_Npc4,(STRING)_Dialog)

This database specifies the dialog for a certain NPC. When you click this NPC the dialog specified in DB_Dialogs will be launched with this NPC and the player that clicked him. The databases with multiple characters in there will start a dialog with all the NPCs in the database and the player that clicked ANY of the NPCs in the list. In general we try to avoid putting multiple NPCs in a dialog because any of these NPCs might be dead or missing and your dialog will not work as expected.
Cleaning up interactive dialogs

	ProcRemoveAllDialogEntriesForSpeaker((CHARACTER)_NPC)

	ProcRemoveDialogEntryForSpeaker((CHARACTER)_NPC,(STRING)_Dialog)

The game will automatically remove all DB_Dialogs entries for dead NPCs. If you want to remove or change an NPC dialog, you'll have to manually remove it first before adding the NPC to the DB_Dialogs database with the new dialog. IMPORTANT the _NPC parameter refers to the first NPC in the DB_Dialogs database.
Interactive Dialog Events

Interactive Dialogs generate events when started and stopped. This way Osiris can do the book keeping needed to keep the dialogs working and allows the scripter to trigger logic depending on dialog choices made by the players.

When an Interactive Dialog starts Osiris receives the event:

	DialogStarted((STRING)_Dialog, (INTEGER)_InstanceID)

_Dialog is the name of the dialog filename without .lsx extension. _InstanceID is a unique identifier given to each started dialog. This identifier can be used to look up who's involved in a dialog with the following databases:

	DB_DialogPlayers((INTEGER)_Inst,(CHARACTER)_Player,(INTEGER)_Index)

	DB_DialogNPCs((INTEGER)_Inst, (CHARACTER)_Npc, (INTEGER)_Index)

	DB_DialogNumPlayers((INTEGER)_Instance,(INTEGER)_Num)

	DB_DialogNumNPCs((INTEGER)_Inst,(INTEGER)_Num)

These databases won't be available after the dialog has ended! So be careful when you use them!
When an Interactive Dialog ends it generates the event:
	DialogEnded((STRING)_Dialog, (INTEGER)_InstanceID)

Where _InstanceID is the same identifier that was passed to the DialogStarted event. At this point the databases outlined above are still valid, but won't be valid anymore after this!
Automated dialogs

These are dialogs without player involvement. These dialogs appear in the game as text above NPCs' heads. They are not interactive and don't block players from moving. Since they don't disrupt the game flow they are free to be started from Behaviour scripts or directly from Osiris using the DialogStart<X>SpeakerDialog function calls.

Defining automated dialogs
	DB_AD_Dialog((CHARACTER)_Char,(STRING)_Dialog)

This database specifies an automated dialog for an NPC when you click him. An automated dialog is a dialog where the text will appear above the head of the character and that is not interactive (ie. the players don't click anything and don't get a dialog interface). IMPORTANT Make sure the NPC has been removed from the DB_Dialogs database before adding it to the DB_AD_Dialog database!
Cleaning up automated dialogs

	ProcRemoveNPCADs((CHARACTER)_Npc)

Use this to remove an automate dialog for an NPC. You also need to do this if you want to change the automated dialog for an NPC or if you want to change to a normal dialog using the DB_Dialogs database.

Automated Dialog Events

Automated Dialogs generate their own sets of events, separate from Interactive Dialogs. This means that an Automated Dialog doesn't generate the Interactive Dialog events. It generates a different set of events! When an Automated Dialog is started Osiris receives the event:

	AutomatedDialogStarted((STRING)_Dialog, (INTEGER)_InstanceID)

This _InstanceID is similar to the one for Interactive Dialogs and can be used to look up which characters are active in the dialog. You can use the same databases as for Interactive Dialogs to do this.
When an Automated dialog ends, Osiris receives the event:

	AutomatedDialogEnded((STRING)_Dialog, (INTEGER)_InstanceID)

Where _InstanceID is identical to the one for the AutomatedDialogStarted event.

Item dialogs

Defining item dialogs
	DB_ItemDialogs((ITEM)_Item,(STRING)_Dialog)

In DOS you can talk to certain items as well. Using the DB_ItemDialogs database you can define an interactive dialog with such an item.

Removing item dialogs

To remove an item dialog, just delete the DB_ItemDialogs database entry. You can turn off item interaction with the ItemSetCanInteract Osiris call.

Companions

When you talk to an item with a companion, you'll get the default_companion dialog isntead of the item dialog. If you want companions to be able to talk to an item normally, add the item to the DB_NoCompanionReplace database.
Starting dialogs from Osiris

You can start dialogs as a result of certain events in Osiris without needing the player to click an NPC. In general these calls won't do anything if an NPC is already in a dialog or dead. So be careful when you use these and make sure your script doesn't block on this.
Starting on entering a trigger
Interactive dialogs
Definition
	DB_OneShot_DialogTrigger((TRIGGER)_Trigger,(STRING)_Dialog,(CHARACTER)_NPC)

	DB_OneShot_DialogTrigger((TRIGGER)_Trigger,(STRING)_Dialog,(CHARACTER)_NPC,(CHARACTER)_NPC2)

	DB_OneShot_DialogTrigger((TRIGGER)_Trigger,(STRING)_Dialog,(CHARACTER)_NPC,(CHARACTER)_NPC2,(CHARACTER)_NPC3)

	DB_OneShot_DialogTrigger((TRIGGER)_Trigger,(STRING)_Dialog,(CHARACTER)_NPC,(CHARACTER)_NPC2,(CHARACTER)_NPC3,(CHARACTER)_NPC4)

Using this database you can start an interactive dialog when a player (or companion) enters a triggers. This will only happen once. The dialog will be started with the NPCs that are defined in the database. Again, be careful when using the versions with multiple NPCs. Any of these could be dead, busy in a dialog or missing.

When a companion walks into a DB_OneShot_DialogTrigger, the dialog will be automatically started on an available player. If no player is available the game will wait till a player is available and then start the dialog.

If you don't want the dialog to happen when a companion walks into the trigger use the following procedure:

	DB_OneShot_PlayerOnlyDialogTrigger((TRIGGER)_Trigger,(STRING)_Dialog,(CHARACTER)_NPC)

Triggers added to this database will only fire for actual players. Not for companions.

If you want the dialogs only to happen when the NPCs can actually see the player or companion that enters the trigger, you can use the following databases:

	DB_OneShot_DialogTrigger_NewSystem((TRIGGER)_Trigger,(STRING)_Dialog,(CHARACTER)_Spotter)

	DB_OneShot_DialogTrigger_NewSystem((TRIGGER)_Trigger, (STRING)_Dialog, (CHARACTER)_Spotter1, (CHARACTER)_Spotter2)

	DB_OneShot_DialogTrigger_NewSystem((TRIGGER)_Trigger, (STRING)_Dialog, (CHARACTER)_Spotter1, (CHARACTER)_Spotter2, (CHARACTER)_Spotter3)

IMPORTANT This uses the SneakTrigger system (see further in this document). So don't forget to assign the GLO_SneakSpotter.charScript script or this will not work.
Removing
	RemoveOneShotDialog((TRIGGER)_Trigger)

With this procedure you can remove a DB_OneShot_DialogTrigger database entry. This will also unregister the trigger!
To remove a DB_OneShot_DialogTrigger_NewSystem database entry, just delete the entry.

Automated dialogs

Definition
	DB_OneShot_ADTrigger((TRIGGER)_Trigger,(STRING)_Dialog,(CHARACTER)_NPC)

	DB_OneShot_ADTrigger((TRIGGER)_Trigger,(STRING)_Dialog,(CHARACTER)_NPC,(CHARACTER)_NPC2)

This defines a trigger that starts an automated dialog when a player or companion walks into it. As always, be careful with the version that defines multiple characters.
Removing
	RemoveOneShotAD((TRIGGER)_Trigger)

This procedures removes a DB_OneShot_ADTrigger database entry. This also unregisters the trigger!
Manual starting
It's possible in Osiris to start dialogs on other events or start them manually when you need custom behaviour that doesn't fit the trigger databases provided. To do this a couple of procedures are provided.
	ProcDoTwoSpeakerDialog((STRING)_Dialog,(CHARACTER)_Npc,(CHARACTER)_Player)

	ProcDoThreeSpeakerDialog((STRING)_Dialog,(CHARACTER)_Npc,(CHARACTER)_Npc2,(CHARACTER)_Player)

	ProcDoFourSpeakerDialog((STRING)_Dialog,(CHARACTER)_Npc,(CHARACTER)_Npc2,(CHARACTER)_Npc3,(CHARACTER)_Player)

	ProcDoFiveSpeakerDialog((STRING)_Dialog,(CHARACTER)_Npc,(CHARACTER)_Npc2,(CHARACTER)_Npc3,(CHARACTER)_Npc4,(CHARACTER)_Player)

All these procedures check if any of the NPCs or players is dead or in a dialog. In those cases the dialogs won't be started.
If you start a dialog with a companion as the _Player parameter, the game will automatically select an available player or wait for a player to become available.

Default Dialogs

In DOS you can assign dialogs to characters straight from the editor using the DefaultDialog property in the SideBar of a character. However this isn't recommended since it makes it harder to spot which dialog is used where and by whom. It's best to let Osiris handle dialogs as described in the previous sections. It's mentioned for the sake of completeness.
Where this property could be useful is when dealing with local characters. Since they can't be referenced in Osiris this is the only way to assign a dialog to them. In general most characters are global though, because the generic behaviours (stealing/attacking reactions etc. see further in this document) are handled through Osiris.
Handling dialog requests
When a character has a dialog assigned to it (either using the DB_Dialogs database in Osiris or using the DefaultDialog property) the players can click the character to start a dialog with it. When a player clicks on a NPC the following event is sent to Osiris:
	DialogStartRequested((CHARACTER)_NPC, (CHARACTER)_Player)

This event could be useful to handle if you want to set some events right before the dialog starts. Reacting to the (Automated)DialogStarted event could be too late in cases where the events are checked in the initial nodes of a dialog.
Temporarily disabling dialogs
If you want to temporarily disable players clicking on a character to start a dialog you can use the following Osiris call:

	CharacterSetHasDialog((CHARACTER)_Character, (INTEGER)_Bool)

Where _Bool is either 1 or 0 to indicate if the dialog should be on or off. IMPORTANT: don't forget to turn the dialog back on after you've turned it off!

You can also temporarily disable players interacting with items by using the Osiris call:

	ItemSetCanInteract((ITEM)_Item, (INTEGER)_bool)

Where _Bool is either 1 or 0 to indicate if we can or can't interact with the item. IMPORTANT: don't forget to turn the interaction back on when you turned it off!

Player Comments

At certain points in the game, the player characters will have some remarks for the players. These are called Player Comments. To define a Player Comment, you provide the following database entries:

	DB_PlayerComments((STRING)_Name,(STRING) _Text,(INTEGER) _PlayerAmount,(INTEGER) _Index)

Where _Name is a unique ID for a comment, _Text is the ID of the TranslatedString (defined in the TranslatedStringKey tool in Glasses), _PlayerAmount indicates how many players this line is intended. This will be 1 or 2. _Index is the index of the line. The game will show the lines one after another, starting from _Index 1. In case that _PlayerAmount is 2 the game will alternate between the player characters to display the lines on. That is line 1 would be Player1, line 2 would be Player2 and so forth.

IMPORTANT: Each Player Comment should have a one player and two player definition.

There's two ways to start a player comment: starting it manually or when a player (not a companion!) walks into a trigger. To launch a player comment manually, use the procedures:
	Launch_PlayerComment((CHARACTER)_Player,(STRING)_Comment)

	Launch_PlayerComment((CHARACTER)_Player,(CHARACTER)_Player2,(STRING)_Comment)

Where _Player is the first speaker, _Player2 is the second speaker and _Comment is the ID that was defined in the DB_PlayerComments database. In the version with just _Player, the game will automatically select the other player as the other speaker. These procedures will also select the 1 or 2 player version of the comment depending on the distance between the player characters.
To define a trigger that starts a player comment, use the database:
	DB_PlayerComment_Trigger((TRIGGER)_Trigger,(STRING)_Comment)

Where _Trigger is an area trigger and _Comment is the ID that was defined in the DB_PlayerComments database.

Trading

By default players can trade with every NPC that's not in the animal dialog group. The only exception are characters in the EvilDude database.
To disable trade for an NPC you have a couple of options. You can either remove an NPC from the database:

	Trader((CHARACTER)_Npc)

Or you can use the procedure:

	ProcDisablePlayerTrade((CHARACTER)_Npc)

To enable it again you can use the procedure:

	ProcEnablePlayerTrade((CHARACTER)_Npc)

Or add the NPC to the Trader database again.

Effects

In DOS effects only live until they're finished or (for looping effects) the level they're in is unloaded. This means that when you have a looping effect in a level A and you region swap to a level B, the effect is destroyed when region A is unloaded. Effects are not saved on the code side. So playing a looping effect, saving and then loading that savegame again, means you won't see the looping effect anymore.

Fortunately there's some Osiris scripting in place that'll keep track of the effects and restores the effects when savegames and levels are loaded. You'll have to use the following procedures to start your looping effects:

	PROC_LoopEffectAtTrigger((STRING)_effect, (TRIGGER)_trigger,(STRING)_ID,(STRING)_Region)

	PROC_LoopEffectAtCharacter((STRING)_effect, (CHARACTER)_character,(STRING)_ID,(STRING)_Region)

	PROC_LoopEffectAtItem((STRING)_effect, (ITEM)_item,(STRING)_ID,(STRING)_Region)

Where _effect is the effect template name. _ID is a unique name for this effect instance. It's used to refer to the effect if you want to stop it later. _Region is the level where the effect will have to be active (for example "Cyseal"). IMPORTANT: If you want the effect to be active in any region, use the string "__ANY__".
To stop a looping effect, use the following procedures:

	PROC_StopEffectAtTrigger((TRIGGER)_trigger,(STRING)_ID)

	PROC_StopEffectAtCharacter((CHARACTER)_character,(STRING)_ID)

	PROC_StopEffectAtItem((ITEM)_item,(STRING)_ID)

where _ID is the same string you passed to the PROC_LoopEffect procedures.
Timers

In DOS we can create delays in actions by using timers. These timers are launched from Osriris and they throw an event when they're finished. Each timer has a unique ID and you can only launch one timer with a certain ID at the same time. Calls to launch a timer with the ID of a timer that's already in progress are ignored!
Character Timers

Now, for example, say you have a group of NPCs walking to an item and they need to disappear after X seconds of reaching it. You need a timer to do the X seconds delay. But since each timer needs a unique ID, we need a way to tie the character to the timer. That way we can react to the timer events for individual characters and only set those offstage where the X seconds have fully elapsed. A timer tied to a character is called a Character Timer.
In DOS we provide a procedure to launch these Character Timers:

	CharTimer((CHARACTER)_Character,(STRING)_TimerName,(INTEGER)_Time)

Where _Character is the character that needs to launch the timer. _TimerName is the timer event name and _Time is the duration of the timer in miliseconds.

To cancel one of those CharTimers, use the procedure:

	CharTimerCancel((CHARACTER)_Character,(STRING)_TimerName)

Where _Character and _TimerName have the same values as the ones passed to CharTimer.

When such a CharTimer is completed, you can react to it using the following database fact:

	CharTimerFinished((CHARACTER)_Character,(STRING)_TimerName)

Where _Character and _TimerName have the same values as the ones passed to CharTimer.

Item Timers

Just like we have Character Timers, we have Item Timers. They work the same way as Character Timers, but are tied to an item instead of a character.

To launch an Item Timer, use the procedure:
	ItemTimer((ITEM)_Item,(STRING)_TimerName,(INTEGER)_Time)

Where _Item is the item it should be tied to. _TimerName is the timer event name you want to use. _Time is the timer duration in milliseconds.

To cancel an Item Timer, use the procedure:

	ItemTimerCancel((ITEM)_Item,(STRING)_TimerName)

Where _Item and _TimerName have the same values as the ones passed to ItemTimer.

When an Item Timer is completed, you can use the following database fact to react:

	ItemTimerFinished((ITEM)_Item,(STRING)_TimerName)

Where _Item and _TimerName have the same values as the ones passed to ItemTimer.

Exploration
In DOS players are rewarded for exploring the game world. We do this by using what we call Exploration Zones or Events.

Exploration Zones

Exploration Zones are triggers that give the party some XP when a player (or companion) walks into them.
Definition

	DB_ExplorationZones((TRIGGER)_Trigger,(INTEGER)_Act,(INTEGER)_ActPArt,(INTEGER)_Gain)

To define an Exploration Zone you add the trigger to the DB_ExplorationZones database.

_Act is the chapter of the game. For DOS this will be 1. _ActPart corresponds to the expected level of the players. Thisi s a number that goes from 1 to 20. _Gain is how special a zone is. This is a number that goes from 1 to 10. The amount of XP given by an Exploration Zone will depend on those 3 numbers.

Exploration Events

Exploration Events are a way to give Exploration experience for doing certain things. They are not Events like Global or Character events, but are "logical events". They are defined solely in Osiris and are used to make balancing easier and be more descriptive about what this Exploration Event is used for.
Definition

	DB_ExplorationEvents((STRING)_String,(INTEGER)_Act,(INTEGER)_ActPart,(INTEGER)_Gain)

_String is a descriptive name for the Exploration Event, prefixed with the region name for where this is used. The _Act,_ActPart and _Gain parameters correspond to the ones for Exploration Zones.
Triggering Exploration Events
	Proc_AddExplorationEvent((STRING)_String)

Use this procedure to trigger an Exploration Event. Events can be triggered multiple times, so if you don't want this, remove the DB_ExplorationEvents database entry after triggering it.

Autosave points
At certain points in the game you might want to save the game. For example after completing an important part of a quest or before a tough fight. The game uses Autosave Zones for this purpose.

Definition
	DB_AutoSaveTrigger((TRIGGER)_Trigger)

Adding your trigger to the DB_AutoSaveTrigger database will automatically register it for you.
Removing
To remove an Autosave Zone, simply remove the DB_AutoSaveTrigger database entry.

Companions
In Divinity Original Sin players can recruit Companions. Companions are helper NPCs. They can join the party and can be controlled by a player. They're not treated as full players however. NPCs will refuse to talk to companions, but they will trade with them.

Companions can join the party when discovered and will usually have their own quest arc to give them some more personality and background. They can be removed from the party at any point. Either by telling them specifically or by some other event (like selecting the Lone Wolf talent for one of your players). Both recruiting and dismissing of Companions happens through their dialog.

Definition

Turning an NPC into a companion is completely driven through Osiris. There's no generic system written for these at the moment, but this will likely change in the future as other projects require the use of Companions.
To indicate that an NPC can be used as a Companion it should be added to this database:

	DB_DefinedCompanions((CHARACTER)_Character);

Since Companion dismissing is driven through dialogs a Global Event is used to notify Osiris that we're willing to dismiss a Companion. To define the dismiss event for a Companion use the following database:

	DB_DismissEvent((CHARACTER)_Comp,(STRING)_Event);

At certain points in the Story the dialog for a Companion will be changed as they need to comment on certain events and situations. To be able to revert back to their original dialog a database entry is kept around. Define your dialog in the following database:

	DB_Companion_Default_Dialog((CHARACTER)_Companion,(STRING)_DefaultDialog);

Recruiting
To recruit a Companion in your party a bit of custom scripting needs to be done.

Recruiting a Companion happens through their dialog. This dialog needs to send a CharacterEvent for the player in the recruitment dialog. Story reacts to that event to add the Companion to the party.

The minimum Story statements needed are as follows:

where <recruit_event> is your character event sent from the Companion dialog and <your_companion> is your Companion NPC. And <rejoin_event> is an event unique to your Companion that is sent from their dialog to rejoin the party after being dismissed at least once. You might want to do more things here than just these steps. Commonly we'd change the NPC's dialog to a new one to keep the dialog logic simpler for the writers. Taht new dialog would be the same one as the one we defined in the DB_Companion_Default_Dialog database.
Dismissing
Dismissing Companions can happen from a dialog or from Osiris script. That's why the actual dismissing code is moved to a procedure. The minimum Osiris code needed to support dismissing is as follows:
Where <your_companion> is your Companion NPC. <your_companion_dialog> is the default dialog you defined in the DB_Companion_Default_Dialog. The procedure ProcDismissYourCompanion is a procedure specifically made for your Companion. It should have a name that indicates which Companion this belongs to. The procedure ProcDoDismissOfCompanion is a procedure called by Osiris code to dismiss all Companions. It should have the same name as shown here in the example. As a parameter it takes your Companion and it simply redirects to your custom dismissal procedure.

IMPORTANT the current Story code assumes that the Companion dialog resets the dismiss flag. Check out the "JAH_Default.lsx" dialog for an example.

Companion dialogs

At certain points in the game companions will react to events or their surroundings. They'll get an exclamation mark above their heads and will have a new dialog when talked to.

Definition

To trigger a reaction for a companion, we use the following procedure:

	Proc_CompanionDialog((CHARACTER)_Companion,(STRING)_Dialog,(CHARACTER)_Anchor)

 _Anchor is used to range limit certain reactions. Say for example you want to make sure the companion only reacts to certain events if he's close enough to a specific NPC, you'd fill in the NPC as the _Anchor parameter. If you don't need this range constraint you can just fill in the same value as for the _Companion parameter.

If you trigger several of these companion dialogs for a companion they'll be queued. That is, the next reaction will be made available as soon as one is done.

Removing
To cancel a specific companion dialog you can use the following procedure:
	ProcCancelOneCompanionDialog((CHARACTER)_Companion,(STRING)_Dialog)

If you want to remove all companion dialogs for a certain companion, you can use this procedure:

	ProcCancelAllCompanionDialogs((CHARACTER)_Companion)

Custom Dialogs
Companions in DOS aren't considered full players. One of the difference with normal players is that companions can't talk to NPCs. When a companion talks to an NPC he'll get a dialog telling him that the NPC doesn't want to talk to him, however they can freely trade with the NPC. The dialog used for this by default is "Default_Companion".
If you want to disable this behaviour and allow companions to talk freely to a specific NPC you can use the following database:

	DB_NoCharacterCompanionReplace((CHARACTER)_Npc)

If you still want a specific dialog for companions talking to an NPC, but a different one than the default dialog, you can use the database:
	DB_CustomCompanionDialog((CHARACTER)_Npc,(STRING)_Dialog)

There's also an option to have a custom companion dialog for NPCs in a certain dialog group. You can use the following database for that:

	DB_CustomCompanionGroupDialog((STRING)_Group,(STRING)_Dialog)

If a character has a DB_CustomCompanionDialog entry but is also in a dialog group that has a DB_CustomCompanionGroupDialog entry, the DB_CustomCompanionDialog takes precedence.
Triggers

Triggers are logical entities and areas in the game world. They're invisible and can't be interacted with by players. They are used to indicate locations or areas that can be referenced by the Behaviour scripts or Osiris code. This allows designers to reason about locations and areas without having to hardcode their location or dimensions.
Types

We define 2 types of triggers: point and area triggers.

Point triggers
These are used to indicate locations in the game world. A point trigger will typically be used as a teleport destination or CharacterMoveTo destination. Point triggers have an orientation in addition to a location. Characters teleported to a point trigger will also take over the orientation of that trigger.

Area triggers

In DOS we define two types of area triggers: box and poly triggers. Box triggers are simple boxes that can be rotated and have their dimensions altered from the SideBar. Poly triggers are areas bounded by a set of control points. For performance and memory reasons consider using box triggers when possible.
Area triggers are most often used to determine if characters are in a certain region of the game world. Events are generated when characters move in or out of triggers and this can be used to trigger certain events in the game. Because checking every trigger with every character would be too expensive, characters need to be registered with triggers to generate events for them.

Registering and Unregistering characters
To register a single character with a trigger you can use the following call:

	TriggerRegisterForCharacter((TRIGGER)_Trigger, (CHARACTER)_Character)

To unregister a character again so it stops generating events use:

	TriggerUnregisterForCharacter((TRIGGER)_Trigger, (CHARACTER)_Character)

Trigger Events

When a character enters a trigger it's registered for, the following event is thrown:

	CharacterEnteredTrigger((CHARACTER)_Character, (TRIGGER)_Trigger)

When a character leaves a trigger it's registered for, the following event is thrown:
	CharacterLeftTrigger((CHARACTER)_Character, (TRIGGER)_Trigger)

IMPORTANT: Registering a trigger for a character that's standing inside it will immediately throw the CharacterEnteredTrigger event. Unregistering a trigger for a character that's standing inside it, will throw the CharacterLeftTrigger event.
Helper functions and procedures
Often times you need to register or unregister a trigger for all player characters. You could do it manually by looping over the isPlayer database and using the TriggerRegisterForCharacter call, but DOS provides convenience functions to do this:

	TriggerRegisterForPlayers((TRIGGER)_Trigger)

	TriggerUnregisterForPlayers((TRIGGER)_Trigger)

However this will only make the trigger work for players and not for companions. Since in DOS companions are considered players for the most part most triggers will need to be registered and unregistered for them too. DOS provides procedures to do just that:
	ProcTriggerRegisterForPlayers((TRIGGER)_Trig)

	ProcTriggerUnregisterForPlayers((TRIGGER)_Trig)

DOS provides a way to check which characters are in which triggers by tracking the trigger events in a database:

	InRegion((CHARACTER)_Char,(TRIGGER) _Region)

This database can be useful to check if any players are inside a certain region or not. When characters enter a trigger they were registered for they get added to this database. When a character leaves the trigger again (or the trigger was unregistered), they are removed from the InRegion database and put in the following database:

	WasInRegion((CHARACTER)_Char,(TRIGGER) _Region)

Single use triggers
Definition
Single use triggers are triggers that immediately unregister themselves for all players as soon as a player (or companion) has walked inside them. They are used to execute a block of Osiris script only once. Instead of having to script this manually every time, DOS provides the following database to define them:
	OneShotPlayerTrigger((TRIGGER)_Trigger)

Triggers added to the OneShotPlayerTrigger are automatically registered for all players and companions. If you want a trigger that only works for players and not for companions, use the following database:

	OneShotPlayerOnlyTrigger((TRIGGER)_Trigger)

To react to a player walking into a OneShotPlayerTrigger we don't use the CharacterEnteredTrigger event directly. That's because a party teleporting inside a trigger will generate CharacterEnteredTrigger events for every party member before we have a chance to unregister the trigger for the party. If we'd react to that event we'd execute our block of Osiris script multiple times again. To make sure we only react once DOS provides the following procedure that you should implement:
	ProcOneShotTriggerEntered((CHARACTER)_Player,(TRIGGER)_Trigger)

Unregistering

To unregister a OneShotPlayerTrigger you need to execute the following Osiris script:

Sneak Triggers

definition

Sneak Triggers are area triggers that trigger only when the player or companion that's inside it are also visible for certain NPCs. That can be useful to allow players to sneak past certain situations. To define a Sneak Trigger use the following database:

	SneakTriggerSpotter((TRIGGER)_Trigger, (CHARACTER)_Char)

This database will automatically register _Trigger for players and companions and tell _Char's behaviour script to check for visible players in _Trigger. IMPORTANT: For this to work the character _Char, needs to have the GLO_SneakSpotter.charScript script assigned!
When the characters in the SneakTriggerSpotter database spot a player, they'll notify Osiris and you can use the following procedures to trigger any logic:

	ProcCharInTriggerSpotted((CHARACTER)_Player,(TRIGGER)_Trigger)

	ProcCharInTriggerSpottedByChar((CHARACTER)_Player,(TRIGGER)_Trigger,(CHARACTER)_Char)

where _Player is the player or companion that was spotted inside trigger _Trigger. _Char is the character that spotted the _Player.

Removing

If you want to remove a SneakTrigger, use the following Osiris statements:

Detecting items in triggers

It's possible to receive events when items enter and leave triggers. This could be used to detect players dragging or dropping items in certain positions. To receive these events for items, you need to register the trigger for items. You do that using the call:

	TriggerRegisterForItems((TRIGGER)_Trigger)

To unregister a trigger for items again, use the call:

	TriggerUnregisterForItems((TRIGGER)_Trigger)

Items moving through triggers will then generate the following events:

	ItemEnteredTrigger((ITEM)_Item, (TRIGGER)_Trigger, (CHARACTER)_Mover)

	ItemTemplateEnteredTrigger((STRING)_ItemTemplate, (INTEGER)_Item, (TRIGGER)_Trigger, (CHARACTER)_Owner, (CHARACTER)_Mover)

	ItemLeftTrigger((ITEM)_Item, (TRIGGER)_Trigger, (CHARACTER)_Mover)

	ItemTemplateLeftTrigger((STRING)_ItemTemplate, (INTEGER)_Item, (TRIGGER)_Trigger, (CHARACTER)_Owner, (CHARACTER)_Mover)

Where _Owner is the owner of the item (CHARACTER_NULL in case of no owner). _Mover is the character doing the moving (or CHARACTER_NULL if the mover is not available).
Generic behaviours
To make the game world in DOS more believable, NPCs will react to players committing crimes. That is they react to players stealing, using, moving and destroying property of others and attacking or killing innocent civilians.
Reputation and Attitude

In DOS each NPC has an opinion about individual players. This opinion is influenced by the personal relation of a player with the NPC and the global reputation of the player. The personal relation is called the Attitude of an NPC towards a player. It's represented as a number between -100 and 100. The global reputation of a player is called his Reputation. It is also represented as a number between -100 and 100. NPCs will use a combination of both numbers to form their opinion about the player. This combination is called the RepAttitude of an NPC towards a player and is also a number between -100 and 100.
Effects of RepAttitude

The RepAttitude of an NPC towards a certain player has some gameplay effects. First of all, a higher RepAttitude will improve the prices a player can sell and buy items for when he trades with that NPC.

If an NPC's RepAttitude reaches -45 or lower, the NPC will no longer want to deal with the player. In that case his dialog changes to reflect this. The default dialog for this case is "Default_Hostile", while NPCs in the "Animal" dialog group, get "default_animalHostile". Bribing the NPC through the trade window or increasing the player's global Reputation can change his opinion about you and raise his RepAttitude.

If an NPC's RepAttitude reaches -75 or lower, the NPC will turn hostile towards that player. At that point the only way to change his opinion of you is by increasing the player's global Reputation.

In DOS when you went into combat with a group of NPCs, their attitude will be set to at least -45 when that combat ends. That means when you flee from a combat and return to talk to the NPCs, they'll have the hostile dialog.
Generic Behaviour options
The generic behaviours are quite complex and as such there's a lot of options to tweak them for individual NPCs.
Enabling and disabling reactions
If you don't want an NPC to react to players committing crimes you can add them to the following database:
	NoDefaultBehavior((CHARACTER)_Char)

NPCs in this database will ignore all crimes, but will immediately go hostile when attacked.
If you want an NPC that goes hostile as soon as any crime is performed, add it to the database:

	IsNotMessingAround((CHARACTER)_Char)

IMPORTANT: put NPCs in only one of these databases!

If you want a IsNotMessingAround NPC that ignores stealing, moving, destroying and attacking of items but still reacts normally to killing and attacking NPCs, use the database:

	NoStealingReaction((CHARACTER)_Char)

If you want an NPC that's not in the IsNotMessingAround database to ignore being attacked by players, add it to the database:

	DB_DisableAttackReaction((CHARACTER)_Char)

Tweaking tolerances
Some NPCs are evil characters pretending to be good. For those NPCs you want them to have a lower opinion and tolerance for actions of players. To flag an NPC as "secretly evil", put him in the database:

	EvilDude((CHARACTER)_Char)

NPCs in the EvilDude database, ignore the global Reputation of a player and only care about their personal relationship (Attitude) with the player. They also have lower tolerance to players attacking them and are not considered innocent citizens. They won't call guards for backup when reacting to a crime and players can't trade with them.
In DOS there are several Guard NPCs. Since guards are supposed to uphold the law, they'll be a lot stricter when it comes to players committing crimes. You flag an NPC as a guard by putting him in the database:

	IsGuard((CHARACTER)_Char)

 Guards have a lower tolerance to stealing. They won't forgive players for stealing. They also have zero tolerance to vandalism. They will react to players attacking any item, tagged with an owner or not.

In general you can also specify how tolerant an NPC is to stealing by using the procedure:

	SetCharacterStats((CHARACTER)_Npc,(INTEGER)_tolerance_thievery,(INTEGER)_value_cheap,(INTEGER)_value_expensive)

where _tolerance_thievery is a number between -100 and 100. Lower numbers mean less tolerance. Every time a player steals something from an NPC and gets caught, the NPC will have a lower tolerance to stealing.

_value_cheap and _value_expensive are gold values that indicate what the NPC considers cheap and expensive. NPCs will have a less strong reaction to stealing something cheap, compared to stealing something expensive.
Item Ownership

In DOS items can be tagged to belong to someone. Items default to not having an owner, so everyone is free to pick them up. If a player picks up an item the owner of the item is changed to belonging to the player. If Osiris moves an item to a character, the item is also tagged as belonging to the target character. Items without an owner have grey/white cursors. Items with an owner have orange/red cursors.
Assigning
This can be done for individual items using the function call:

	ItemSetOwner((ITEM)_Item, (CHARACTER)_NewOwner)

To clear the owner of an item, use the call:

	ItemClearOwner((ITEM)_Item)

For rooms or regions it would be too tedious to have to do this for every item separately, so the following database can be used to tag all items inside a trigger (including the local ones!):

	ItemOwnerShipTriggers((STRING)_Level,(TRIGGER)_Region,(CHARACTER)_Owner)

Where _Level is the map name of where the trigger is (for example "Cyseal"). _Region is the trigger you want to tag the items as belonging to _Owner.
If you want to exclude items from an ItemOwnerShipTrigger you can add it to the database:

	ItemOwnerShipClearItem((STRING)_Level,(ITEM)_Item)

Where _Level is the map name of where the trigger is (for example "Cyseal"). _Item is the item you want to exclude.
Personal items

Some items should only be used by the owner of the item, for other characters using should fail. You can do this by using the call:
	ItemSetOnlyOwnerCanUse((ITEM)_Item, (INTEGER)_bool)

where _bool is either 0 or 1 to indicate everyone or only the owner can use the item.

If a character other than the owner of the item uses a personal item the following event is generated:

	CharacterUsedItemFailed((CHARACTER)_Character, (ITEM)_Item)

where _Character is the character that tried to use the item.
Shops
Shop owners have slightly different reactions to people stealing and moving items in their shops. For example, stealing an item in a shop will pop up the "Are you interested in buying this?" dialog. To define a shop and its owner, you have to create an entry in the following database:

	ShopRegion((STRING)_Level,(TRIGGER)_Region,(CHARACTER)_ShopKeeper,(STRING)_Dialog)

Where _Level is the level name where the shop is located (for example: "Cyseal"), _Region is a trigger that defines the shop, _ShopKeeper is the NPC that owns the shop and _Dialog is the dialog that's used when you get caught stealing in the shop.

Forbidden areas

In DOS you can define certain areas or doors to be private; belonging to one or more NPCs. When a player is found in one of those areas they'll ask the player to leave. And possibly call the guards if the offense is repeated enough times. If more than one player is caught in the area, the NPC will start attacking. If a player is caught using a private door, a similar sequence of events is executed.
Definition
Forbidden areas are defined through a couple of databases:
	DB_ForbiddenArea((STRING)_ID,(CHARACTER)_Owner)

The DB_ForbiddenArea database is used to defined one or more owners of a certain forbidden area defined by the _ID string.
To define a forbidden area, use the database:
	DB_ForbiddenAreaTriggers((STRING)_ID,(TRIGGER)_Area,(TRIGGER)_Teleport)

Where _ID is the same string you defined in the DB_ForbiddenArea database to set up the owners. _Area is an area trigger where players are not allowed in. _Teleport is a point trigger that indicates where players are teleported to when an NPC asks a player to leave the area.
You can have multiple entries in the DB_ForbiddenAreaTriggers database belonging to the same _ID string.
To define a forbidden door, use the database:

	DB_ForbiddenDoors((STRING)_ID,(ITEM)_Door)

where _ID is the same string you defined in the DB_ForbiddenArea database. You can have multiple doors for the same _ID string.

Players can only open forbidden doors when they're not seen by any of the owners (defined in the DB_ForbiddenArea database) of the door. Otherwise the door will stay closed and, if possible, the NPC will start a dialog with player that tried to open the door.
The game will use a generic dialog for failing to open a Forbidden door, but it's possible to define a custom one for an NPC using the database:

	DB_CustomForbiddenDoorDialog((CHARACTER)_Npc,(STRING)_Dialog)

Guarded regions
NPCs will sometimes call in the help of guards when they spot players performing crimes. Guards, however, are only available in certain regions defined with area triggers. We call those regions "Guarded Regions". If crimes are performed outside Guarded Regions the NPC won't call guards but will usually go over to attacking players.

To define a Guarded Region, use the database:

	GuardedRegion((TRIGGER)_GuardedRegion,(TRIGGER)_QuitChaseRegion,(STRING)_GuardType,(STRING)_Prison)

Where _GuardedRegion is the trigger defining the Guarded Region. _QuitChaseRegion is a trigger that is at least as large as the _GuardedRegion trigger. When a player leaves the _QuitChaseRegion the summoned guards will be tagged to leave as a group. This means that the guards will disappear when the player loses sight of all of the guards in the summoned group. _GuardType is the type of guard to summon for a certain guarded region. _Prison is the ID of the prison that's attached to this guarded region and where players will be sent to when they get arrested.
For more information about prisons and guards, check the next sections.

Summoned Guards

While it's possible to tag any NPC in the world as a guard, these guards will not be summoned when NPCs call for guards. The guards are taken from a separate database. These Summoned Guards are global characters that will be offstage most of the time and will be put onstage when they're needed.

When guards are summoned, this happens in groups. Summoned Guards will always operate in groups. The Summon Guards are global characters, so there's a finite number of them. So it's possible that at certain times all Summoned Guards are busy and no more guards will be sent in. Summoned Guard groups will be made available for summoning again when either the whole group is dead or when the group has been tagged as "leaving" and none of the guards are visible for players.
To define Summoned Guards, use the following database:

	GuardTypeNpc((STRING)_Type,(CHARACTER)_Guard,(STRING)_Script,(INTEGER)_Index)

Where _Type is the type of the summoned guard. This is the same type you defined in the GuardedRegion database._Guard is the global character for the Summoned Guard. _Script is a legacy parameter and can be ignored. _Index is the index of the guard for this type. This is a number that starts at 1 and is increased with 1 for every guard of type _Type.
The Summoned Guard Type needs some extra information as well. You can define a guard type with the database:

	GuardTypeData((STRING)_Type,(STRING)_Timer,(STRING)_Alignment,(STRING)_Map)

Most of this database is there for legacy reasons. _Type is the same string as the GuardTypeNpc database. _Timer is a legacy field and can be ignored. _Alignment is a legacy field and can be ignored. _Map is the level where the Guard Type will be active (For example "Cyseal").
Lastly a Guard Type needs a database entry for where the guards will be teleported to when they're not needed. This is also for legacy reasons, since Summoned Guards will be offstage when they're not being used. You can use the following database to declare this:
	GuardTeleportDest((STRING)_Map,(TRIGGER)_Dest)

Where _Map is the name of the level (for example: "Cyseal"). _Dest is a trigger where Summoned Guards will be teleported to. Since guards are offstage in DOS, it doesn't really matter which trigger you fill in here.

Prison

While attacking NPCs causes the Summoned Guards to go hostile immediately, players can get arrested for vandalizing, stealing or trespassing in DOS. To define a prison you need to fill in the following database for every player:
	PrisonData((CHARACTER)_Player,(STRING)_Prison,(TRIGGER)_LocationCell,(TRIGGER)_CellExit,(ITEM)_Door,(ITEM)_Chest)

where _Player is a player character, _Prison is the same string you defined in the GuardedRegion database. _LocationCell is the trigger the player will be teleported to when he's arrested. _CellExit is the trigger the player will be teleported to when he leaves the prison. _Door is the cell door of the cell the player will be put in. _Chest is the chest where the player's items will be put in when he's put in prison. Each player will need their own chest, since the game will transfer all items that were found in the chest to the player when he's released.
To support companions another database is provided to define the chests that need to be used to put their items in:

	DB_CompanionChest((STRING)_Prison,(ITEM)_Chest,CHARACTER_NULL)

Where _Prison is the same string you defined in the GuardedRegion. _Chest is the chest to be used by the Companion. The third parameter is a book keeping parameter for who's using that chest. You can set it to CHARACTER_NULL when you define your entry.

Further, you need to define a database that'll allow Osiris to lock your door with the correct key:
	PrisonDataDoorKeys((ITEM)_Door,(STRING)_Key)

where _Door is the same cell door you defined in the PrisonData database. _Key is the key string that'll be used to lock the door. This should match the key string of the key item that'll be used to open the cell if you give prison guards a key.

Finally, there's a database that holds some information about escaping a certain prison:
	PrisonEscapeData((STRING)_Prison,(TRIGGER)_Prohib,(CHARACTER)_Guard,(STRING)_Script,(TRIGGER)_Jail)

Where _Prison is the same string you defined in the GuardedRegion. _Prohib is a trigger that when the player is spotted in it will cause the guards to be called.

 IMPORTANT: a prison needs to have a guarded region for this to work! It also needs an NPC that's in the IsGuard database that acts as the prison guard!
_Guard and _Script are legacy parameters that can be ignored. Using CHARACTER_NULL and "" is OK. _Jail is a trigger that defines the total area of the jail. If the player leaves this trigger, he is considered to have escaped from prison.
When players in DOS are jailed they can give some comments about their situation. These comments are specific to each prison and are defined in the database:
	DB_PrisonComments((STRING)_Prison,(STRING)_Comment,(INTEGER)_Index)

Where _Prison is the same string you defined in the GuardedRegion. _Comment is a player comment and _Index defines the order of the comment. It's a number that starts from 0 and is increased for every comment.
For every player you'll have to define a database that keeps track of which comment the players are at:
	DB_CurrentPrisonComment((STRING)_Prison,(CHARACTER)_Player,0)

Where _Prison is the same string you defined in the GuardedRegion._Player is a player character and the last number is the index of the current comment. It should start at 0.
Generic dialogs
The Generic Behaviours use a number of dialogs that are used to react to certain player actions. In case these dialogs don't fit your character or situation, it's often possible to use a custom dialog.
Threaten dialogs

When a player talks to an NPC with their weapon out, the NPC will feel threatened and will start a Generic Dialog to inform the player about this. To specify a custom Threaten dialog for an NPC, use the database:

	DB_CustomThreatenDialog((CHARACTER)_Npc,(STRING)_Dialog)

Where _Dialog is the dialog filename without file extension.

If you want a whole faction of characters use a custom threaten dialog, you can use the following database:

	DB_CustomThreatenFactionDialog((STRING)_Faction,(STRING)_Dialog)

Any character that's in the faction _Faction will start _Dialog when threatened.

If you want a custom threaten dialog for all characters in a certain dialog group, use the database:

	DB_CustomThreatenGroupDialog((STRING)_Group,(STRING)_Dialog)

The priority of these database, is how they're listed here. That is DB_CustomThreatenDialog takes precedence over the other databases. And the faction dialog takes precedence over the dialog group dialog.

If you want to disable the threaten dialog for an NPC all together, use the database:

	NeverThreatenedDialog((CHARACTER)_Npc)

Attack dialogs
When a player attacks an innocent NPC he will get a warning from that NPC. The game will use a generic dialog for this, but if you want a custom one you can use the database:

	DB_CustomWarningDialog((CHARACTER)_Npc,(STRING)_Dialog)

If you want a custom dialog for a certain faction, you can use the database:

	DB_CustomFactionWarningDialog((STRING)_Faction,(STRING)_Dialog)

If you want a custom dialog for a certain dialog group, use the database:

	DB_CustomGroupWarningDialog((STRING)_Group,(STRING)_Dialog)

Priority for these dialogs is how it's listed in this document. DB_CustomWarningDialog takes precedence over every other dialog, with factions taking precedence over dialog groups.
When a character decides to turn hostile towards players they'll usually do a dialog. A generic dialog is provided ("i_attack_you"), but it's possible to define a custom one for characters using the database:

	DB_CustomAttackDialog((CHARACTER)_Npc,(STRING)_Dialog)

When you attack a companion, you can specify a custom dialog for when they decide to attack back. You do this by providing an entry in the database:

	DB_AttackDialog((CHARACTER)_Npc,(STRING)_Dialog)

IMPORTANT: this is only supported for attacking Companions!
Moving characters from Osiris
In DOS Osiris has precedence over everything. That is, when characters are executing Osiris commands, they have precedence over dialog and script commands. As a consequence, when a character is moved to a point or object from Osiris it'll complete that move even if it's put in combat for any reason. The character will even ignore turn based movement to complete the move. This can cause the game to block on a character's turn till the character is done executing the Osiris command. To avoid situations like that, especially when characters execute a long move command, you can use the following procedures:

	ProcCharacterMoveToTrigger((CHARACTER)_Char,(TRIGGER)_Point,(INTEGER)_Running,(STRING)_Event)

	ProcCharacterMoveToItem((CHARACTER)_Char,(ITEM)_Point,(INTEGER)_Running,(STRING)_Event)

The parameters are exactly the same as the Osiris calls CharacterMoveToTrigger and CharacterMoveToItem. _Event is the CharacterEvent that's thrown when they character is done moving.
In general you'd use these procedures to move characters, unless you specifically don't want a character to stop moving to their destination even if combat starts. In that case, use the Osiris calls mentioned above.
IF

DialogCharacterEventSet(<recruit_event>,_Player,_)

THEN

CharacterMakeCompanion(<your_companion>,_Player);

Proc_LimitAbilitiesForCompanion(<your_companion>);

CharacterSetEvent(<your_companion>,"Hired");

DB_Companion(<your_companion>);

ProcSetPartyFullIfLoneWolf();

IF

DialogCharacterEventSet(<rejoin_event>,_Player,_ID)

THEN

DB_Companion(<your_companion>);

CharacterMakeCompanion(<your_companion>,_Player);

DialogClearCharacterEvent(<rejoin_event>,_Player,_ID);

ProcSetPartyFullIfLoneWolf();

IF

DialogEnded(<your_companion_dialog>,_)

AND

DB_GlobalEvent(<your_dismiss_event>)

AND

DB_Companion(<your_companion>)

THEN

ProcDismissYourCompanion();

PROC

ProcDoDismissOfCompanion((CHARACTER) <your_companion>)

THEN

ProcDismissYourCompanion ();

		

PROC

ProcDismissYourCompanion ()

AND

DB_Companion(<your_companion>)

THEN

OnCompanionDismissed(<your_companion>);

		

PROC

ProcDismissYourCompanion ()

AND

DB_Companion(<your_companion>)

THEN

ProcCancelAllCompanionDialogs(<your_companion>);

NOT DB_Companion(<your_companion>);

CharacterDetachFromGroup(<your_companion>);

CharacterMakeNPC(<your_companion>);

CharacterRemoveFromParty(<your_companion>);

ProcTriggerUnregisterForPlayers(_Trigger);

NOT OneShotPlayerTrigger(_Trigger);

ProcCleanUpSneakTrigger((TRIGGER)_Trigger);

ProcTriggerUnregisterForPlayers((TRIGGER)_Trigger);

